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1 The k-extendibility criterion for separability
Definition 1.1 (Separability vs entanglement). A state %AB on A ⊗ B is separable if it may be written as a
convex combination of product states, i.e. %AB =

∑
x px σ

x
A ⊗ τ

x
B. Otherwise, it is entangled.

Deciding whether a given bipartite state is entangled or (close to) separable is an important issue in quantum
physics. It is however, in general, a hard task (both from a mathematical and a computational point of view).
→ Solution: Find set of states which are easier to characterize and which contain the set of separable states,
hence providing NC for separability that may be checked efficiently (e.g. by an SDP).

Definition 1.2 (k-extendibility). Let k ∈ N. A state %AB on A⊗B is k-extendible w.r.t. B if there exists a state
%ABk on A⊗ B⊗k which is invariant under any permutation of the B subsystems and s.t. %AB = TrBk−1 %ABk.

Theorem 1.3 (The complete family of k-extendibility criteria for separability, [7]). On a bipartite Hilbert
space A⊗ B, a state is separable if and only if it is k-extendible w.r.t. B for all k ∈ N.

Remarks: SA:B separable states. EkA:B k-extendible states w.r.t. B.
• “%AB ∈ SA:B ⇒ ∀ k ∈ N, %AB ∈ EkA:B”:
obvious since σA ⊗ τB = TrBk−1

[
σA ⊗ τ⊗kB

]
.

• “∀ k ∈ N, %AB ∈ EkA:B ⇒ %AB ∈ SA:B”:
relies on the quantum de Finetti theorem [6].
• %AB ∈ EkA:B ⇒ ∀ k′ 6 k, %AB ∈ Ek

′

A:B.
→ Sequence of increasingly constraining separability tests, which
an entangled state is guaranteed to stop passing at some point. Figure 1: Nested separability relaxations

Problem: When relaxing separability to k-extendibility, how “rough” is the approximation?
Quantitative versions of the k-extendibility criterion: For any state %AB on A⊗ B,

%AB ∈ EkA:B ⇒ ‖%AB − SA:B‖1 6 2d2
B/k [6] and ‖%AB − SA:B‖LOCC→ 6

√
2 ln dA/k [5].

Bounds which are non-trivial only if k � d2
B or k � ln dA, so can anything interesting be said for a “not too

big” k in the case where dA, dB are “big”? Nevertheless, they are known to be close from optimal: there exist
states which are k-extendible, and nevertheless far away from the set of separable states in some standard or
operational distance measure, hence “very” entangled.
→ Instead of looking at worst case scenarios, can we make stronger statements about average/typical be-
haviours? Hope: Implications regarding average case complexity of checking separability...?

Two possible quantitative strategies:
• Estimate the size of the set of states, either satisfying a given separability criterion or being indeed separable.
→ Information on how much bigger than the separable set the relaxed set is.
• Characterize when certain random states are with high probability, either violating a given separability cri-
terion or indeed entangled. → Information on how powerful the separability test is to detect entanglement.

One useful observation: For any Hermitian MAB on A⊗ B, supσAB∈Ek Tr(MABσAB) =
∥∥M̃ABk

∥∥
∞, where

M̃ABk = 1
k

∑k
j=1MABj

⊗ IdBk\Bj
.

2 Technical interlude: GUE and Wishart matrices
Definition 2.1.
• n×n GUE matrix: G = (H +H†)/

√
2 with H a n×n matrix having independent complex normal entries.

• (n, s)-Wishart matrix: W = HH† with H a n× s matrix having independent complex normal entries.

Definition 2.2.
• Semicircular distribution of variance σ2: dµSC(σ2)(x) = 1

2πσ2

√
4σ2 − x21[−2σ,2σ](x)dx.

• Marčenko-Pastur distribution of parameter λ: dµMP (λ)(x) =

{
fλ(x)dx if λ > 1

(1− λ) δ0 + λfλ(x)dx if λ 6 1
, where

fλ(x) =

√
(λ+−x)(x−λ−)

2πλx 1[λ−,λ+](x), with λ± = (
√
λ± 1)2.

Link: For any Hermitian M on Cn, denote by NM = 1
n

∑n
i=1 δλi(M) its spectral distribution.

• (Gn)n∈N sequence of n× n GUE matrices:
(
NGn/

√
n

)
n∈N converges to µSC(1).

• (Wn)n∈N sequence of (n, λn)-Wishart matrices:
(
NWn/λn

)
n∈N converges to µMP (λ).

3 Mean width of the set of k-extendible states

Definition 3.1 (Mean-width of a set of states).
K convex set of states on Cn, containing Id/n.
• Width of K in the direction ∆, for ∆ a n × n Hermitian having unit
Hilbert-Schmidt norm: w(K,∆) := supσ∈K Tr(∆(σ − Id/n)).
• Mean-width of K: w(K) := Ew(K,∆), for ∆ uniformly distributed
on the Hilbert-Schmidt norm unit sphere.
Equivalently: w(K) ∼n→+∞ Ew(K,G)/n, forG a n×nGUE matrix.

→ The mean-width of K is a certain measure of its size (for any “rea-
sonable” K, w(K) ' vrad(K), where vrad(K) is the volume-radius
of K, i.e. the radius of the Euclidean ball with same volume as K). Figure 2: Width of K in the direction ∆

Theorem 3.2. On Cd ⊗Cd, denote by S, resp. Ek, the set of separable, resp. k-extendible, states. Then,

c

d3/2
6 w(S) 6

C

d3/2
, c, C > 0 universal constants (c.f. [3]), while w(Ek) ∼

d→+∞
2√
kd
.

For k ∈ N fixed, the mean-width of the set of k-extendible states is of order 1/d, hence much bigger than
the one of the set of separable states.
→ On high dimensional bipartite systems, the set of k-extendible states is a very rough approximation of the
set of separable states.

Main steps in the proof:
E supσ∈Ek Tr(G(σ − Id/d2)) = E‖G̃‖∞. To estimate the operator norm of the “modified” GUE matrix G̃:
compute all p-order moments ETr G̃p, and identify the limiting spectral distribution. After rescaling by d/k:
a semicircular distribution µSC(k). The latter’s support has 2

√
k as upper-edge.

4 k-extendibility of random induced quantum states
Definition 4.1 (Random induced states). System space H ≡ Cn. Ancilla space H′ ≡ Cs.
→ Random mixed state model on H: % = TrH′ |ψ〉〈ψ| with |ψ〉 a uniformly distributed pure state on H⊗ H′.
Equivalently: % = W/TrW , with W a (n, s)-Wishart matrix.

Question: Fix d ∈ N and consider % a random state on Cd ⊗Cd induced by some environment Cs.
For which values of s is % typically separable/k-extendible?
“typically” = “with probability going to 1 as d grows”. Hence, two steps:
(a) Identify the range of s where % is, on average, separable/k-extendible.
(b) Show that the average behaviour is generic in high dimension (concentration of measure phenomenon: a
sufficiently “well-behaved” function has an exponentially small probability of deviating from its average as
the dimension grows).

Theorem 4.2. Let % be a random state on Cd ⊗Cd induced by some environment Cs.
• s < cd3⇒ % typically entangled, and s > Cd3 log2 d⇒ % typically separable (c.f. [4]).
• s < (k−1)2

4k d2⇒ % typically not k-extendible, and s > Ckd
2 log2 d⇒ % typically k-extendible.

c, C > 0 universal constants, Ck > 0 constant which depends on k.

For k ∈ N fixed, the threshold environment dimension at which random induced states are generically
k-extendible or not is of order d2 (up to log factors), hence much smaller than the one at which they are gener-
ically separable or not.
→ In the range d2 . s . d3, the typical entanglement of random induced states is typically not detected by
the k-extendibility test.

Main steps in the proof:
• Lower-bound: If supσ∈Ek Tr(%σ) < Tr(%2), then % /∈ Ek (non-k-extendibility witness). Hence, characterize
when E supσ∈Ek Tr(Wσ) < ETr(W 2)/ETrW for W a (d2, s)-Wishart matrix.
RHS: In the limit d, s→ +∞, ETr(W 2) = d4s + d2s2 and ETrW = d2s.
LHS: E supσ∈Ek Tr(Wσ) = E‖W̃‖∞. To estimate the operator norm of the “modified” Wishart matrix W̃ :
compute all p-order moments ETr W̃ p, and identify the limiting spectral distribution. After rescaling by s/k:
a Marčenko-Pastur distribution µMP (ks/d2). The latter’s support has (

√
ks/d2 + 1)2 as upper-edge.

• Upper-bound: Relating the gauge of a sufficiently “well-balanced” convex body to that of its polar +
Comparing averages of unitarily invariant norms over different random matrix ensembles (majorization).

5 Generalizations
• Adding the constraint that the symmetric extension is PPT across one (even) cut:

Other complete hierarchy of separability criteria, where the SDP to be solved is bigger but much faster [9].
However, imposing this extra requirement only reduces the mean-width of the set of k-extendible states by a
factor

√
2...

• Generalization to the unbalanced case: A ≡ CdA, B ≡ CdB, dA 6= dB
Straightforward if dA, dB→ +∞, but more subtle if dA or dB is fixed (free probability approach perhaps more
relevant and powerful in that setting...?)
•What happens if k is not fixed, but instead grows with d? Partial answers only...

If 1� k � d, then w(S)� w(Ek)� w(D) (i.e. Ek lies “strictly in between” S and D).
→ k & d is necessary to have w(Ek) ' w(S).

6 Summary and perspectives
When k > 2 is a fixed parameter, asymptotic weakness of the k-extendibility NC for separability (as the

dimensions of the underlying local Hilbert spaces grow).
Similar features are exhibited by all other known separability criteria, such as PPT [1], realignment [2],

reduction [8] etc.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
k-extendibility “beats”

from the point of view of
average size

entanglement
detection of random

states

PPT for k > 11 for k > 17

realignment ? for k > 5
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