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1 Introduction
Seminal observation: A key feature of entanglement is that it cannot be shared unconditionally across many
subsystems of a composite system [9].

→ Sharpest manifestation: If two parties A and B share a maximally entangled state, then they cannot share
any correlation (even classical ones) with a third party C.

→More realistic scenario: If A and B share a partially entangled (mixed) quantum state ρAB, then they may
share part of this entanglement with other parties, but restrictions remain.
For instance: A state ρAB on A ⊗ B is called k-extendible if there exists a state ρABk on A ⊗ B⊗k which is
invariant under permutation of the B subsytsems and s.t. TrBk−1 ρABk = ρAB.
If ρAB is infinitely-extendible, then it is separable [1, 4].

Question: How to formalize quantitatively this observation that entanglement is “monogamous”?

Natural idea: Given an entanglement measure E, show that, for any state ρABC,

EA:BC(ρABC) > EA:B(ρAB) + EA:C(ρAC). (CKW)

Inequality (CKW) holds true for the squared concurrence [3] or the squashed entanglement [2], but fails for
many other entanglement measures.
Introducing rescalings or mixing different entanglement measures may allow to recover inequalities of this
type, but what about a less ad hoc treatment?

Question: How to define monogamy of an entanglement measure in the most general possible terms?

Definition 1.1 (Generalized universal monogamy relation).
An entanglement measure E is monogamous if there exists a non-trivial function f : R+×R+→ R+ s.t., for
any state ρABC on any tripartite system A⊗ B⊗ C,

EA:BC(ρABC) > f
(
EA:B(ρAB), EA:C(ρAC)

)
.

E is an entanglement monotone so w.l.o.g. f (x, y) > max(x, y).
Non-trivial constraint: f (x, y) > max(x, y) for at least some x, y.
→ If the only possible choice is f (x, y) = max(x, y),E drastically
fails monogamy: knowing z = EA:BC > 0 does not constrain in
any way x = EA:B and y = EA:C in the interval [0, z].
Intuition: E is monogamous if it obeys some trade-off between
the values of EA:B and EA:C for a given EA:BC.
Form (CKW) of a monogamy relation: f (x, y) = x + y EA:BC

EA:B

EA:BC

EA:C

0

2 Non-monogamy for the entanglement of formation and the relative
entropy of entanglement

EF (entanglement of formation) and ER (relative entropy of entanglement):
Entropy: S(ρ) = −Tr(ρ log ρ). Relative entropy: D(ρ‖σ) = −Tr(ρ[log ρ− log σ]).
•EF (ρA:B) := inf

{∑
i piS

(
TrB |ψi〉〈ψi|AB

)
:
∑
i pi|ψi〉〈ψi|AB = ρAB

}
.

•ER(ρA:B) := inf
{
D
(
ρAB‖σAB

)
: σAB separable

}
.

Random induced states: System of interest H. Environment E.
Random mixed state model on H: ρ = TrE |ψ〉〈ψ|, where |ψ〉 is a uniformly distributed pure state on H⊗ E.
Note: If |E| 6 |H|, ρ is uniformly distributed on the set of states on H with rank at most |E|.

Theorem 2.1 (Generic non-monogamy for EF and ER).
Let ρABC be a random state on A ⊗ B ⊗ C ≡ Cd ⊗ Cd ⊗ Cd, induced by some environment E ≡ Cs, with
s ' log d. Then,

•EF (ρA:BC) 6 log d and ER(ρA:BC) 6 log d.
•With probability going to 1 (exponentially) as d grows, EF (ρA:B), EF (ρA:C) = (1 − o(1)) log d and
ER(ρA:B), ER(ρA:C) = (1− o(1)) log d.

Remark: Any value z for EA:BC(ρABC) is indeed attainable, on systems of local dimension 2z.

Needed technical results in the proof: Typical value of EF and ER for random induced states (cf. also [6]).

There exist universal constants C, c, c′ > 0 s.t., for ρAB a random state on A ⊗ B ≡ Cd ⊗ Cd, induced by
some environment E ≡ Cs, with Cd 6 s 6 d2, we have

∀ t > 0, P

(∣∣∣∣EF (ρAB)− log d +
1

2 ln 2

∣∣∣∣ > t

)
6 e−cd

2t2/ log2 d and P

(∣∣∣∣∣ER(ρAB)− log
d2

s

∣∣∣∣∣ > t

)
6 e−c

′st2.

Conclusion: EF and ER are non-monogamous, in the most general sense. This feature even becomes generic
for high-dimensional quantum states.

Question: Is this just a consequence of their subadditivity [5, 10]?

3 Non-monogamy for a whole class of additive entanglement measures
Requirements on the considered entanglement measure E:

(1) Normalization: For any state ρAB, EA:B(ρAB) 6 min(log |A|, log |B|).
(2) Lower boundedness on the anti-symmetric state α: There exist universal constants c, t > 0 s.t.

EA:A′(αAA′) > c/ logt |A|.
(3) Additivity under tensor product: For any state ρAB, EAm:Bm(ρ

⊗m
AB ) = mEA:B(ρAB).

(4) Linearity under locally orthogonal mixture: For any states ρAB, σAB s.t. Tr(ρAσA) = Tr(ρBσB) = 0,
EA:B(λρAB + (1− λ)σAB) = λEA:B(ρAB) + (1− λ)EA:B(σAB).

Remarks on these requirements:
•Assumption (3) holds by construction for any regularized entanglement measure, i.e. one defined as
E∞A:B(ρAB) := lim

n→+∞
1
nEAn:Bn(ρ

⊗n
AB).

•Assumption (2) is a faithfulness (or geometry-preserving) property: in 1-norm distance α is dimension-
independently separated from the set of separable states, so an entanglement measure which faithfully
captures this geometrical feature should be dimension-independently (or weakly dimension-dependently)
bounded away from 0 on α.

Examples of entanglement measures fulfilling these requirements:
E∞F and E∞R , the regularized versions of EF and ER.

Theorem 3.1 (Non-monogamy for any E satisfying requirements (1–4)).
There exists a state ρABC on A⊗ B⊗ C ≡ Cd ⊗ (Cd)⊗2

k ⊗ (Cd)⊗2
k
, where 0 6 k 6 blog dc, s.t.

EA:B(ρAB), EA:C(ρAC) > (1− o(1))EA:BC(ρABC) as d→ +∞.

Remark: By considering tensor products and mixtures, any value z for EA:BC(ρABC) is indeed attainable, on
systems of suitably large local dimensions.

Needed observation in the proof: The fully anti-symmetric state αAn on A⊗n is s.t., for any m 6 n,
TrAn−m αAn = αAm is the fully anti-symmetric state on A⊗m

Conclusion: Additive entanglement measures may also be non-monogamous, in the most general sense, as
soon as they are strongly faithful. Explicit construction of a counter-example, based on the anti-symmetric
state.

Question: Can monogamy still be rescued in some way?

4 Recovering monogamy with non-universal relations
Definition 4.1 (Generalized non-universal monogamy relation).
An entanglement measure E is monogamous if, given a tripartite system A⊗ B⊗ C, there exists a non-trivial
function fA,B,C : R+ ×R+→ R+ s.t., for any state ρABC on A⊗ B⊗ C,

EA:BC(ρABC) > fA,B,C
(
EA:B(ρAB), EA:C(ρAC)

)
.

Theorem 4.2 (Dimension-dependent monogamy relations for EF and E∞R ).
There exist universal constants c, c′ > 0 s.t., for any state ρABC on A⊗ B⊗ C ≡ Cd ⊗Cd ⊗Cd,

EF (ρA:BC) > max

(
EF (ρA:B) +

c

d2 log8 d
EF (ρA:C)

8 , EF (ρA:C) +
c

d2 log8 d
EF (ρA:B)

8
)
,

E∞R (ρA:BC) > max

(
E∞R (ρA:B) +

c′

d2 log4 d
E∞R (ρA:C)

4 , E∞R (ρA:C) +
c′

d2 log4 d
E∞R (ρA:B)

4
)
.

Remark: Most likely, neither the dimensional pre-factors nor the powers 8 and 4 appearing in these relations
are tight.

Needed ingredients in the proof: Hybrid monogamy-type relations involving filtered through local measure-
ments entanglement measures (cf. also [8]).

Conclusion: In any fixed finite dimension, EF and E∞R can be regarded as monogamous. But the monogamy
relations that they obey become trivial in the limit of infinite dimension.

5 Concluding remarks and perspectives
•What happens when more than 3 parties are involved? More precisely, what are the conceptual limitations
and what would be the practical implications in such many-body scenario (e.g. in quantum condensed-matter
physics or gravity)?

•What about hybrid monogamy-type relations mixing different entanglement measures (and/or even involving
measures of other kinds of correlations)?

• Can we understand better the connections of this entanglement monogamy phenomenon with the quantum
marginal problem and the question of quantum information distribution/recoverability...?
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