Should entanglement measures be monogamous or faithful?

Phys. Rev. Lett. 117, 060501 (2016)

G. Adesso ${ }^{a}$, S. Di Martino ${ }^{b}$, M. Huber ${ }^{c}$, C. Lancien ${ }^{d}$, M. Piani ${ }^{e}$, A. Winter ${ }^{b}$

a) University of Nottingham
b) Universitat Autònoma de Barcelona
c) IQOQI Vienna
d) Universidad Complutense de Madrid
e) University of Strathclyde

The University of
Nottingham

UNiversidad
COMPLUTENSE

1 Introduction

Seminal observation: A key feature of entanglement is that it cannot be shared unconditionally across many subsystems of a composite system [9].
\rightarrow Sharpest manifestation: If two parties A and B share a maximally entangled state, then they cannot share any correlation (even classical ones) with a third party C .
\rightarrow More realistic scenario: If A and B share a partially entangled (mixed) quantum state ρ_{AB}, then they may share part of this entanglement with other parties, but restrictions remain.
For instance: A state ρ_{AB} on $\mathrm{A} \otimes \mathrm{B}$ is called k-extendible if there exists a state $\rho_{\mathrm{AB}^{k}}$ on $\mathrm{A} \otimes \mathrm{B}^{\otimes k}$ which is invariant under permutation of the B subsytsems and s.t. $\operatorname{Tr}_{\mathrm{B}^{k-1}} \rho_{\mathrm{AB}^{k}}=\rho_{\mathrm{AB}}$.
If ρ_{AB} is infinitely-extendible, then it is separable [1, 4].
Question: How to formalize quantitatively this observation that entanglement is "monogamous"?
Natural idea: Given an entanglement measure E, show that, for any state ρ_{ABC},

$$
\begin{equation*}
E_{\mathrm{A}: \mathrm{BC}}\left(\rho_{\mathrm{ABC}}\right) \geqslant E_{\mathrm{A}: \mathrm{B}}\left(\rho_{\mathrm{AB}}\right)+E_{\mathrm{A}: \mathrm{C}}\left(\rho_{\mathrm{AC}}\right) \tag{CKW}
\end{equation*}
$$

Inequality (CKW) holds true for the squared concurrence [3] or the squashed entanglement [2], but fails for many other entanglement measures.
Introducing rescalings or mixing different entanglement measures may allow to recover inequalities of this type, but what about a less ad hoc treatment?

Question: How to define monogamy of an entanglement measure in the most general possible terms?
Definition 1.1 (Generalized universal monogamy relation).
An entanglement measure E is monogamous if there exists a non-trivial function $f: \mathbf{R}^{+} \times \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$s.t., for any state ρ_{ABC} on any tripartite system $\mathrm{A} \otimes \mathrm{B} \otimes \mathrm{C}$,

$E_{\mathrm{A}: \mathrm{BC}}\left(\rho_{\mathrm{ABC}}\right) \geqslant f\left(E_{\mathrm{A}: \mathrm{B}}\left(\rho_{\mathrm{AB}}\right), E_{\mathrm{A}: \mathrm{C}}\left(\rho_{\mathrm{AC}}\right)\right)$.

E is an entanglement monotone so w.l.o.g. $f(x, y) \geqslant \max (x, y)$. Non-trivial constraint: $f(x, y)>\max (x, y)$ for at least some x, y. \rightarrow If the only possible choice is $f(x, y)=\max (x, y), E$ drastically fails monogamy: knowing $z=E_{\mathrm{A}: \mathrm{BC}}>0$ does not constrain in any way $x=E_{\mathrm{A}: \mathrm{B}}$ and $y=E_{\mathrm{A}: \mathrm{C}}$ in the interval $[0, z]$.
Intuition: E is monogamous if it obeys some trade-off between the values of $E_{\mathrm{A}: \mathrm{B}}$ and $E_{\mathrm{A}: \mathrm{C}}$ for a given $E_{\mathrm{A}: \mathrm{BC}}$.

2 Non-monogamy for the entanglement of formation and the relative entropy of entanglement
$\mathrm{E}_{\mathbf{F}}$ (entanglement of formation) and $\mathrm{E}_{\mathbf{R}}$ (relative entropy of entanglement):
Entropy: $S(\rho)=-\operatorname{Tr}(\rho \log \rho)$. Relative entropy: $D(\rho \| \sigma)=-\operatorname{Tr}(\rho[\log \rho-\log \sigma])$.

- $E_{F}\left(\rho_{\mathrm{A}: \mathrm{B}}\right):=\inf \left\{\sum_{i} p_{i} S\left(\operatorname{Tr}_{\mathrm{B}}\left|\psi_{i}\right\rangle\left\langle\left.\psi_{i}\right|_{\mathrm{AB}}\right): \sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\left.\psi_{i}\right|_{\mathrm{AB}}=\rho_{\mathrm{AB}}\right\}\right.\right.$.
- $E_{R}\left(\rho_{\mathrm{A}: \mathrm{B}}\right):=\inf \left\{D\left(\rho_{\mathrm{AB}} \| \sigma_{\mathrm{AB}}\right): \sigma_{\mathrm{AB}}\right.$ separable $\}$.

Random induced states: System of interest H . Environment E .
Random mixed state model on $\mathrm{H}: \rho=\operatorname{Tr}_{\mathrm{E}}|\psi\rangle\langle\psi|$, where $|\psi\rangle$ is a uniformly distributed pure state on $\mathrm{H} \otimes \mathrm{E}$. Note: If $|\mathrm{E}| \leqslant|\mathrm{H}|, \rho$ is uniformly distributed on the set of states on H with rank at most $|\mathrm{E}|$.

Theorem 2.1 (Generic non-monogamy for E_{F} and E_{R}).
Let ρ_{ABC} be a random state on $\mathrm{A} \otimes \mathrm{B} \otimes \mathrm{C} \equiv \mathrm{C}^{d} \otimes \mathrm{C}^{d} \otimes \mathrm{C}^{d}$, induced by some environment $\mathrm{E} \equiv \mathrm{C}^{s}$, with $s \simeq \log d$. Then,

- $E_{F}\left(\rho_{\mathrm{A}: \mathrm{BC}}\right) \leqslant \log d$ and $E_{R}\left(\rho_{\mathrm{A}: \mathrm{BC}}\right) \leqslant \log d$.
- With probability going to 1 (exponentially) as d grows, $E_{F}\left(\rho_{\mathrm{A}: \mathrm{B}}\right), E_{F}\left(\rho_{\mathrm{A}: \mathrm{C}}\right)=(1-o(1)) \log d$ and $E_{R}\left(\rho_{\mathrm{A}: \mathrm{B}}\right), E_{R}\left(\rho_{\mathrm{A}: \mathrm{C}}\right)=(1-o(1)) \log d$.

Remark: Any value z for $E_{\mathrm{A}: \mathrm{BC}}\left(\rho_{\mathrm{ABC}}\right)$ is indeed attainable, on systems of local dimension 2^{z}.
Needed technical results in the proof: Typical value of E_{F} and E_{R} for random induced states (cf. also [6]). There exist universal constants $C, c, c^{\prime}>0$ s.t., for ρ_{AB} a random state on $\mathrm{A} \otimes \mathrm{B} \equiv \mathrm{C}^{d} \otimes \mathrm{C}^{d}$, induced by some environment $\mathrm{E} \equiv \mathrm{C}^{s}$, with $C d \leqslant s \leqslant d^{2}$, we have
$\forall t>0, \mathbf{P}\left(\left|E_{F}\left(\rho_{\mathrm{AB}}\right)-\log d+\frac{1}{2 \ln 2}\right|>t\right) \leqslant e^{-c d^{2} t^{2} / \log ^{2} d}$ and $\mathbf{P}\left(\left|E_{R}\left(\rho_{\mathrm{AB}}\right)-\log \frac{d^{2}}{s}\right|>t\right) \leqslant e^{-c^{\prime} s t^{2}}$.

Conclusion: E_{F} and E_{R} are non-monogamous, in the most general sense. This feature even becomes generic for high-dimensional quantum states.
Question: Is this just a consequence of their subadditivity [5, 10]?
3 Non-monogamy for a whole class of additive entanglement measures
Requirements on the considered entanglement measure E:
(1) Normalization: For any state $\rho_{\mathrm{AB}}, E_{\mathrm{A}: \mathrm{B}}\left(\rho_{\mathrm{AB}}\right) \leqslant \min (\log |\mathrm{A}|, \log |\mathrm{B}|)$.
(2) Lower boundedness on the anti-symmetric state α : There exist universal constants $c, t>0$ s.t. $E_{\mathrm{A}: \mathrm{A}^{\prime}}\left(\alpha_{\mathrm{AA}^{\prime}}\right) \geqslant c / \log ^{t}|\mathrm{~A}|$.
(3) Additivity under tensor product: For any state $\rho_{\mathrm{AB}}, E_{\mathrm{A}^{m}: \mathrm{B}^{m}}\left(\rho_{\mathrm{AB}}^{\otimes m}\right)=m E_{\mathrm{A}: \mathrm{B}}\left(\rho_{\mathrm{AB}}\right)$.
(4) Linearity under locally orthogonal mixture: For any states $\rho_{\mathrm{AB}}, \sigma_{\mathrm{AB}}$ s.t. $\operatorname{Tr}\left(\rho_{\mathrm{A}} \sigma_{\mathrm{A}}\right)=\operatorname{Tr}\left(\rho_{\mathrm{B}} \sigma_{\mathrm{B}}\right)=0$, $E_{\mathrm{A}: \mathrm{B}}\left(\lambda \rho_{\mathrm{AB}}+(1-\lambda) \sigma_{\mathrm{AB}}\right)=\lambda E_{\mathrm{A}: \mathrm{B}}\left(\rho_{\mathrm{AB}}\right)+(1-\lambda) E_{\mathrm{A}: \mathrm{B}}\left(\sigma_{\mathrm{AB}}\right)$.

Remarks on these requirements:

- Assumption (3) holds by construction for any regularized entanglement measure, i.e. one defined as $E_{\mathrm{A}: \mathrm{B}}^{\infty}\left(\rho_{\mathrm{AB}}\right):=\lim _{n \rightarrow+\infty} \frac{1}{n} E_{\mathrm{A}^{n}: \mathrm{B}^{n}}\left(\rho_{\mathrm{AB}}^{\otimes n}\right)$.
- Assumption (2) is a faithfulness (or geometry-preserving) property: in 1-norm distance α is dimensionindependently separated from the set of separable states, so an entanglement measure which faithfully captures this geometrical feature should be dimension-independently (or weakly dimension-dependently) bounded away from 0 on α.

Examples of entanglement measures fulfilling these requirements:

E_{F}^{∞} and E_{R}^{∞}, the regularized versions of E_{F} and E_{R}.
Theorem 3.1 (Non-monogamy for any E satisfying requirements (1-4)).
There exists a state ρ_{ABC} on $\mathrm{A} \otimes \mathrm{B} \otimes \mathrm{C} \equiv \mathbf{C}^{d} \otimes\left(\mathbf{C}^{d}\right)^{\otimes 2^{k}} \otimes\left(\mathbf{C}^{d}\right)^{\otimes 2^{k}}$, where $0 \leqslant k \leqslant\lfloor\log d\rfloor$, s.t.
$E_{\mathrm{A}: \mathrm{B}}\left(\rho_{\mathrm{AB}}\right), E_{\mathrm{A}: \mathrm{C}}\left(\rho_{\mathrm{AC}}\right) \geqslant(1-o(1)) E_{\mathrm{A}: \mathrm{BC}}\left(\rho_{\mathrm{ABC}}\right)$ as $d \rightarrow+\infty$.

Remark: By considering tensor products and mixtures, any value z for $E_{\mathrm{A}: \mathrm{BC}}\left(\rho_{\mathrm{ABC}}\right)$ is indeed attainable, on systems of suitably large local dimensions.

Needed observation in the proof: The fully anti-symmetric state $\alpha_{A^{n}}$ on $A^{\otimes n}$ is s.t., for any $m \leqslant n$,

Conclusion: Additive entanglement measures may also be non-monogamous, in the most general sense, as soon as they are strongly faithful. Explicit construction of a counter-example, based on the anti-symmetric state.

Question: Can monogamy still be rescued in some way?

4 Recovering monogamy with non-universal relations

Definition 4.1 (Generalized non-universal monogamy relation).
An entanglement measure E is monogamous if, given a tripartite system $\mathrm{A} \otimes \mathrm{B} \otimes \mathrm{C}$, there exists a non-trivial function $f_{\mathrm{A}, \mathrm{B}, \mathrm{C}}: \mathbf{R}^{+} \times \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$s.t., for any state ρ_{ABC} on $\mathrm{A} \otimes \mathrm{B} \otimes \mathrm{C}$,

$$
E_{\mathrm{A}: \mathrm{BC}}\left(\rho_{\mathrm{ABC}}\right) \geqslant f_{\mathrm{A}, \mathrm{~B}, \mathrm{C}}\left(E_{\mathrm{A}: \mathrm{B}}\left(\rho_{\mathrm{AB}}\right), E_{\mathrm{A}: \mathrm{C}}\left(\rho_{\mathrm{AC}}\right)\right) .
$$

Theorem 4.2 (Dimension-dependent monogamy relations for E_{F} and E_{R}^{∞}). There exist universal constants c, $c^{\prime}>0$ s.t., for any state ρ_{ABC} on $\mathrm{A} \otimes \mathrm{B} \otimes \mathrm{C} \equiv \mathrm{C}^{d} \otimes \mathbf{C}^{d} \otimes \mathbf{C}^{d}$,

$$
\begin{aligned}
& E_{F}\left(\rho_{\mathrm{A}: \mathrm{BC}}\right) \geqslant \max \left(E_{F}\left(\rho_{\mathrm{A}: \mathrm{B}}\right)+\frac{c}{d^{2} \log ^{8} d} E_{F}\left(\rho_{\mathrm{A}: \mathrm{C}}\right)^{8}, E_{F}\left(\rho_{\mathrm{A}: \mathrm{C}}\right)+\frac{c}{d^{2} \log ^{8} d} E_{F}\left(\rho_{\mathrm{A}: \mathrm{B}}\right)^{8}\right), \\
& E_{R}^{\infty}\left(\rho_{\mathrm{A}: \mathrm{BC}}\right) \geqslant \max \left(E_{R}^{\infty}\left(\rho_{\mathrm{A}: \mathrm{B}}\right)+\frac{c^{\prime}}{d^{2} \log ^{4} d} E_{R}^{\infty}\left(\rho_{\mathrm{A}: \mathrm{C}}\right)^{4}, E_{R}^{\infty}\left(\rho_{\mathrm{A}: \mathrm{C}}\right)+\frac{c^{\prime}}{d^{2} \log ^{4} d} E_{R}^{\infty}\left(\rho_{\mathrm{A}: \mathrm{B}}\right)^{4}\right) .
\end{aligned}
$$

Remark: Most likely, neither the dimensional pre-factors nor the powers 8 and 4 appearing in these relations are tight.

Needed ingredients in the proof: Hybrid monogamy-type relations involving filtered through local measurements entanglement measures (cf. also [8]).

Conclusion: In any fixed finite dimension, E_{F} and E_{R}^{∞} can be regarded as monogamous. But the monogamy relations that they obey become trivial in the limit of infinite dimension.

5 Concluding remarks and perspectives

- What happens when more than 3 parties are involved? More precisely, what are the conceptual limitations and what would be the practical implications in such many-body scenario (e.g. in quantum condensed-matter physics or gravity)?
- What about hybrid monogamy-type relations mixing different entanglement measures (and/or even involving measures of other kinds of correlations)?
- Can we understand better the connections of this entanglement monogamy phenomenon with the quantum marginal problem and the question of quantum information distribution/recoverability...?

References

[1] M. Christandl, R. König, G. Mitchison, R. Renner, "One-and-a-half quantum De Finetti theorems".
[2] M. Christandl, A. Winter, "Squashed entanglement: an additive entanglement measure"
[3] V. Coffman, J. Kundu, W.K. Wootters, "Distributed entanglement".
[4] A.C. Doherty, P.A. Parrilo, F.M. Spedalieri, "A complete family of separability criteria"
[5] M.B. Hastings, "Superadditivity of communication capacity using entangled inputs".
[6] P. Hayden, D.W. Leung, A. Winter, "Aspects of generic entanglement".
[7] M. Koashi, A. Winter, "Monogamy of entanglement and other correlations"
[8] M. Piani, "Relative entropy of entanglement and restricted measurements".
[9] B. Terhal, "Is entanglement monogamous?".
[10] K.G.H. Vollbrecht, R.F. Werner, "Entanglement measures under symmetry"

