de Finetti reductions for partially exchangeable distributions

Ivan Bardet, Cécilia Lancien and Ion Nechita

Institut des Hautes Études Scientifiques, Universidad Complutense de Madrid, Laboratoire de Physique Théorique Toulouse

The finite de Finetti theorem

Let V be a finite alphabet, $|V|=d$, and consider probability measures on V^{n} which are symmetric under permutations:

$$
\forall \sigma \in \mathcal{S}_{n}, \quad \mathbb{P}\left[x_{1}, x_{2}, \ldots, x_{n}\right]=\mathbb{P}\left[x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right] .
$$

Such probability distributions are called exchangeable. In particular, i.i.d. distributions are exchangeable

$$
\mathbb{P}=\pi^{\otimes n} \quad \text { i.e. } \quad \mathbb{P}\left[x_{1}, x_{2}, \ldots, x_{n}\right]=\prod_{i=1}^{n} \pi\left(x_{i}\right)=\prod_{a \in V} \pi(a)^{\left|x^{-1}(a)\right|} .
$$

Theorem([1]). Let \mathbb{P} be an exchangeable probability distribution on V^{n}. Then, for $k \ll n$, its k-marginal \mathbb{P}_{k} is close to a convex mixture of i.i.d. distributions. More precisely, for any $k \leq n$, there exists a probability measure μ on $\mathcal{P}(V)$ such that

$$
\left\|\mathbb{P}_{k}-\int \pi^{\otimes k} \mathrm{~d} \mu(\pi)\right\|_{\mathrm{TV}} \leq \frac{2 k d}{n}
$$

de Finetti reductions

Let \sim be an equivalence relation on V^{n}, and denote by $\mathcal{P}_{\sim}\left(V^{n}\right)$ the convex set of \sim invariant distributions:

$$
\mathbb{P} \in \mathcal{P}_{\sim}\left(V^{n}\right) \Longleftrightarrow \forall x \sim y \in V^{n}, \quad \mathbb{P}[x]=\mathbb{P}[y]
$$

The set $\mathcal{P}_{\sim}\left(V^{n}\right)$ is a simplex, whose extreme points are the uniform distributions on the equivalence classes of \sim. Let $\Pi_{n} \subseteq \mathcal{P}_{\sim}\left(V^{n}\right)$ be a distinguished subclass of \sim exchangeable distributions.

Definition. We say that the pair (\sim, Π) admits a flexible de Finetti reduction if, for any probability distribution $\mathbb{P} \in \mathcal{P}_{\sim}\left(V^{n}\right)$, we have, point-wise,

$$
\mathbb{P} \leq \operatorname{poly}(n) \int_{\pi \in \Pi_{n}} F(\mathbb{P}, \pi)^{2} \pi \mathrm{~d} \nu(\pi)
$$

where F is the fidelity, $\operatorname{poly}(n)$ is a polynomial in n and ν is a probability distribution on $\Pi\left(V^{n}\right)$.

Figure 1: The filled yellow area corresponds to mixtures of i.i.d. distributions on $\{0,1\}^{2}$. The lines delimit $k=2$-marginals of exchangeable distributions on $\{0,1\}^{n}$, with $n=3,4,5,10$.

Three examples

- Exchangeability, with $\Pi_{n}=\left\{\pi^{\otimes n}: \pi \in \mathcal{P}(V)\right\}$
- Markov exchangeability [2]: if $x, y \in V^{n}$, define $x \sim y$ iff $x_{1}=y_{1}$ and, for all $a, b \in V, t_{a b}(x)=t_{a b}(y)$, where

$$
t_{a b}(x)=\left|\left\{i \in[1, n-1]:\left(x_{i}, x_{i+1}\right)=(a, b)\right\}\right|
$$

The class of distinguished measures $\Pi_{n}=\left\{\mathbb{Q}_{a, M}\right\}$ is indexed by couples (a, M), where $a \in V$ and M is a Markov matrix

$$
\mathbb{Q}_{a, M}\left[x_{1}, \ldots x_{n}\right]=\mathbf{1}_{x_{1}=a} \prod_{i, j \in V} M_{i j}^{t_{i j}(x)}
$$

- ℓ-Markov exchangeability: $x \sim y$ iff $x_{i}=y_{i}$ for $i=1, \ldots, \ell$ and, for all $a=\left(a_{1}, \ldots, a_{\ell+1}\right) \in V^{\ell+1}, t_{a}(x)=t_{a}(y)$, where

$$
t_{a}(x)=\mid\left\{\text { occurrences of the sequence } a_{1}, . ., a_{\ell+1} \text { in } x\right\} \mid
$$

One can also consider double partial exchangeability, where $V=V_{1} \times V_{2}$ is equipped with the Cartesian product of two equivalence relations on $V_{1,2}$.

Our main result

The three examples mentioned above (exchangeability, Markov exchangeability, and ℓ-Markov exchangeability), together with the appropriate classes of distributions, admit flexible de Finetti reductions with polynomial pre-factors of respective degrees
(EXCH): 2(d-1)
(M-EXCH): $\quad d(2 d+1)-1$
$(\ell-\mathrm{M}-\mathrm{EXCH}): \quad d^{\ell}(2 d+1)-1$.

Tools: the BEST theorem
Our results follow from estimates of the size of the equivalence classes on V^{n}. Inspired by $[6,7]$, we construct a bijection between the elements of a given equivalence class and the Eulerian cycles of a (class-dependent) graph.
Theorem ([3, 4]). Consider an Eulerian directed multigraph G with a marked edge $e_{0} \in E$ and a marked vertex $w_{0} \in V$. Let $T\left(G, w_{0}\right)$ denote the number of spanning trees of G oriented towards the vertex w_{0} (i.e. all orientations in the tree are pointing towards w_{0}). Then, the number of Eulerian cycles of G starting with the edge e_{0} is given by

$$
T\left(G, w_{0}\right) \prod_{i \in V}(\operatorname{outdeg}(i)-1)!.
$$

Remarkably, $T\left(G, w_{0}\right)$ is independent of the choice of the marked vertex w_{0}.
Example. Let $x=(11323122) \in\{1,2,3\}^{8}$ and consider \mathcal{C}, its equivalence class w.r.t. Markov exchangeability. The class \mathcal{C} has 12 elements, and $T(G)=$ 3.
$t=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$

3
+
2
\vdots
1

Figure 2: The matrix t and the graph G associated to $x=(11323122)$, as well as the three oriented trees flowing towards the vertex 1 .

Conditional distributions

Theorem. For any $[\mathrm{EXCH} / \mathrm{M}-\mathrm{EXCH} / \ell-\mathrm{M}-\mathrm{EXCH}]$-exchangeable probability distribution $\mathbb{P} \in \mathcal{P}_{\sim}\left(V^{n}\right)$ with $V=A \times X$, we have, point-wise,

$$
\mathbb{P}_{A^{n} \mid X^{n}} \leq \operatorname{poly}(n) \int_{\pi \in \Pi_{n}\left(A^{n} \times X^{n}\right)} \pi_{A^{n} \mid X^{n}} d \nu(\pi),
$$

where $\operatorname{poly}(n)$ is a polynomial in n and ν is a probability distribution on $\Pi_{n}\left(A^{n} \times X^{n}\right)$.

References

[1] Diaconis, P., Freedman, D. Finite exchangeable sequences. The Annals of Probability, 745-764 (1980).
[2] Diaconis, P., Freedman, D. de Finetti's theorem for Markov chains. The Annals of Probability, 115-130 (1980).
[3] Tutte, W. T., Smith, C. A. B. On unicursal paths in a network of degree 4. The American Mathematical Monthly, 48(4), 233-237 (1941).
[4] van Aardenne-Ehrenfest, T., de Bruijn, N. G. Circuits and trees in oriented linear graphs. Simon Stevin, 28:203âÅŞ-217, (1951).
[5] Tutte, W. T., Smith, C. A. B. On unicursal paths in a network of degree 4. The American Mathematical Monthly, 48(4), 233-237 (1941).
[6] Zaman, A. Urn models for Markov exchangeability. The Annals of Probability, 12(1), 223-229 (1984).
[7] Zaman, A. A finite form of de Finetti's theorem for stationary Markov exchangeability. The Annals of Probability, 1418-1427 (1986).

