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The finite de Finetti theorem

Let V be a finite alphabet, |V | = d, and consider probability measures on V n

which are symmetric under permutations:
∀σ ∈ Sn, P[x1, x2, . . . , xn] = P[xσ(1), xσ(2), . . . , xσ(n)].

Such probability distributions are called exchangeable. In particular, i.i.d. dis-
tributions are exchangeable

P = π⊗n i.e. P[x1, x2, . . . , xn] =
n∏
i=1
π(xi) =

∏
a∈V

π(a)|x−1(a)|.

Theorem([1]). Let P be an exchangeable probability distribution on V n.
Then, for k � n, its k-marginal Pk is close to a convex mixture of i.i.d. dis-
tributions. More precisely, for any k ≤ n, there exists a probability measure
µ on P(V ) such that ∥∥∥Pk − ∫

π⊗kdµ(π)
∥∥∥TV ≤

2kd
n
.
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Figure 1: The filled yellow area corresponds to mixtures of i.i.d. distributions on {0, 1}2. The
lines delimit k = 2-marginals of exchangeable distributions on {0, 1}n, with n = 3, 4, 5, 10.

de Finetti reductions

Let ∼ be an equivalence relation on V n, and denote by P∼(V n) the convex
set of ∼ invariant distributions:

P ∈ P∼(V n) ⇐⇒ ∀x ∼ y ∈ V n, P[x] = P[y].
The set P∼(V n) is a simplex, whose extreme points are the uniform distribu-
tions on the equivalence classes of ∼. Let Πn ⊆ P∼(V n) be a distinguished
subclass of ∼ exchangeable distributions.

Definition. We say that the pair (∼,Π) admits a flexible de Finetti reduc-
tion if, for any probability distribution P ∈ P∼(V n), we have, point-wise,

P ≤ poly(n)
∫
π∈Πn

F (P, π)2πdν(π),

where F is the fidelity, poly(n) is a polynomial in n and ν is a probability
distribution on Π(V n).

Three examples

•Exchangeability, with Πn = {π⊗n : π ∈ P(V )}
•Markov exchangeability [2]: if x, y ∈ V n, define x ∼ y iff x1 = y1 and, for
all a, b ∈ V , tab(x) = tab(y), where

tab(x) = |{i ∈ [1, n− 1] : (xi, xi+1) = (a, b)}|
The class of distinguished measures Πn = {Qa,M} is indexed by couples
(a,M), where a ∈ V and M is a Markov matrix

Qa,M [x1, . . . xn] = 1x1=a
∏

i,j∈V
M

tij(x)
ij

• `-Markov exchangeability: x ∼ y iff xi = yi for i = 1, . . . , ` and, for all
a = (a1, . . . , a`+1) ∈ V `+1, ta(x) = ta(y), where

ta(x) = |{occurrences of the sequence a1, .., a`+1 in x}|

One can also consider double partial exchangeability, where V = V1 × V2 is
equipped with the Cartesian product of two equivalence relations on V1,2.

Our main result

The three examples mentioned above (exchangeability, Markov exchangeability, and `-Markov exchangeability), together with the appropriate classes of
distributions, admit flexible de Finetti reductions with polynomial pre-factors of respective degrees

(EXCH): 2(d− 1) (M-EXCH): d(2d + 1)− 1 (`-M-EXCH): d`(2d + 1)− 1.

Tools: the BEST theorem

Our results follow from estimates of the size of the equivalence classes on V n.
Inspired by [6, 7], we construct a bijection between the elements of a given
equivalence class and the Eulerian cycles of a (class-dependent) graph.
Theorem([3, 4]). Consider an Eulerian directed multigraph G with a
marked edge e0 ∈ E and a marked vertex w0 ∈ V . Let T (G,w0) denote
the number of spanning trees of G oriented towards the vertex w0 (i.e. all ori-
entations in the tree are pointing towards w0). Then, the number of Eulerian
cycles of G starting with the edge e0 is given by

T (G,w0)
∏
i∈V

(outdeg(i)− 1)!.

Remarkably, T (G,w0) is independent of the choice of the marked vertex w0.
Example. Let x = (11323122) ∈ {1, 2, 3}8 and consider C, its equivalence
class w.r.t. Markov exchangeability. The class C has 12 elements, and T (G) =
3.
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Figure 2: The matrix t and the graph G associated to x = (11323122), as well as the three
oriented trees flowing towards the vertex 1.

Conditional distributions

Theorem. For any [EXCH/M-EXCH/`-M-EXCH]-exchangeable prob-
ability distribution P ∈ P∼(V n) with V = A×X , we have, point-wise,

PAn|Xn ≤ poly(n)
∫
π∈Πn(An×Xn)

πAn|Xn dν(π),

where poly(n) is a polynomial in n and ν is a probability distribution on
Πn(An ×Xn).

References

[1] Diaconis, P., Freedman, D. Finite exchangeable sequences. The Annals of Probability,
745–764 (1980).

[2] Diaconis, P., Freedman, D. de Finetti’s theorem for Markov chains. The Annals of
Probability, 115–130 (1980).

[3] Tutte, W. T., Smith, C. A. B. On unicursal paths in a network of degree 4. The
American Mathematical Monthly, 48(4), 233–237 (1941).

[4] van Aardenne-Ehrenfest, T., de Bruijn, N. G. Circuits and trees in oriented linear
graphs. Simon Stevin, 28:203âĂŞ-217, (1951).

[5] Tutte, W. T., Smith, C. A. B. On unicursal paths in a network of degree 4. The
American Mathematical Monthly, 48(4), 233–237 (1941).

[6] Zaman, A. Urn models for Markov exchangeability. The Annals of Probability, 12(1),
223–229 (1984).

[7] Zaman, A. A finite form of de Finetti’s theorem for stationary Markov
exchangeability. The Annals of Probability, 1418–1427 (1986).


