Locally restricted POVMs on a multipartite quantum system QIC, Vol. 15, No. 5-6, 512–540 (2014) - arXiv:1406.1959[quant-ph]

Guillaume Aubrun ^a, Cécilia Lancien ^{a,b}

a) Université Claude Bernard Lyon 1, b) Universitat Autònoma de Barcelona This research was supported by the ANR projects OSQPI and StoQ.

18th QIP, Sydney, January 10-16 2015

Distinguishability norms and quantum state discrimination

System that can be in two quantum states, ρ or σ , with equal prior probabilities. Task: Decide in which one it is most likely, based on the accessible experimental data, i.e. on the outcome of a POVM $M = (M_i)_{i \in I}$ performed on it (only one sample available \rightarrow single observation).

Optimal strategy: Whenever outcome i is obtained, guess ρ if $Tr(\rho M_i) > Tr(\sigma M_i)$, and σ otherwise.

Optimal probability of error:
$$P_e = \frac{1}{2} \left(1 - \sum_{i \in I} \left| \text{Tr} \left(\left[\frac{1}{2} \rho - \frac{1}{2} \sigma \right] M_i \right) \right| \right) := \frac{1}{2} \left(1 - \left\| \frac{1}{2} \rho - \frac{1}{2} \sigma \right\|_{\text{M}} \right).$$
 \rightarrow "Distinguishability norm" $\left\| \frac{1}{2} \rho - \frac{1}{2} \sigma \right\|_{\text{M}} = \text{Bias of the POVM M on the state pair } (\rho, \sigma)$ [13].

Distinguishability norms and convex geometry

- POVM $M = (M_i)_{i \in I}$ on \mathbb{C}^d : $\{M_i : i \in I\}$ positive operators on \mathbb{C}^d s.t. $\sum_{i \in I} M_i = \mathrm{Id}$. Associated distinguishability (semi-)norm: for any Hermitian Δ on \mathbb{C}^d , $\|\Delta\|_{\mathrm{M}} := \sum_{i \in I} |\mathrm{Tr}\left(\Delta M_i\right)|$.
- Associated convex body K_M : dual of the unit ball for $\|\cdot\|_M$ (i.e. unit ball for the norm dual to $\|\cdot\|_M$).
- Width of $K_{\rm M}$ in a given direction:

$$w(K_{\mathcal{M}}, \Delta) := \sup_{X \in K_{\mathcal{M}}} \operatorname{Tr}(\Delta X) = \|\Delta\|_{\mathcal{M}},$$

for Δ having unit Hilbert-Schmidt norm.

• Mean-width of $K_{\rm M}$:

$$w(K_{\mathcal{M}}) := \mathbf{E} w(K_{\mathcal{M}}, \Delta) = \mathbf{E} \|\Delta\|_{\mathcal{M}},$$

for Δ uniformly distributed on the Hilbert-Schmidt norm unit sphere.

Figure 1: Width of $K_{\rm M}$ in the direction Δ

• For a whole set \mathbf{M} of POVMs on \mathbf{C}^d :

the associated distinguishability (semi-)norm is defined as $\|\cdot\|_{\underline{\mathbf{M}}} := \sup_{\mathrm{M} \in \underline{\mathbf{M}}} \|\cdot\|_{\mathrm{M}}$,

so that the associated convex body becomes $K_{\underline{\mathbf{M}}} = \operatorname{conv}\left(\bigcup_{\mathrm{M}\in\underline{\mathbf{M}}}K_{\mathrm{M}}\right)$.

Locally restricted measurements on a multipartite quantum system

Problem: Seminal observation in quantum state discrimination [10, 11]: $\|\cdot\|_{\mathbf{ALL}} = \|\cdot\|_1$.

→ For any two orthogonal quantum states, there exists a (global) POVM which perfectly discriminates them. But on a composite system, shared by several parties, there are locality constraints on the set $\underline{\mathbf{M}}$ of POVMs that experimenters are able to implement.

$$\underline{\mathbf{LO}}\subset\underline{\mathbf{LOCC}}^{\to}\subset\underline{\mathbf{LOCC}}\subset\underline{\mathbf{SEP}}\subset\underline{\mathbf{PPT}}\subset\underline{\mathbf{ALL}}$$

 \to How do these restrictions affect their distinguishing power? That is, do we have $\|\cdot\|_{\mathbf{M}} \simeq \|\cdot\|_1$ or $\|\cdot\|_{\mathbf{M}} \ll \|\cdot\|_1$ when the local dimensions grow?

Motivations:

• Existence of data-hiding states on multipartite systems [6, 8], i.e. states that would be well distinguished by a suitable global measurement but that are barely distinguishable by any local measurement. **Ex:** Completely symmetric and antisymmetric states on $\mathbf{C}^d \otimes \mathbf{C}^d$, $\varsigma = \frac{1}{d^2 + d}(\mathrm{Id} + \mathrm{F})$ and $\alpha = \frac{1}{d^2 - d}(\mathrm{Id} - \mathrm{F})$.

 $\Delta = \varsigma - \alpha \text{ is s.t. } \|\Delta\|_{\underline{\mathbf{LO}}} \leqslant \|\Delta\|_{\underline{\mathbf{LOCC}}} \leqslant \|\Delta\|_{\underline{\mathbf{SEP}}} = \|\Delta\|_{\underline{\mathbf{PPT}}} = \frac{4}{d+1} \ll 2 = \|\Delta\|_1.$

 \rightarrow Is this phenomenon generic or exceptional?

• Bounds valid for any Hermitian: very wide of the mark but known to be close from optimal [12].

Ex: On $\mathbf{C}^d \otimes \mathbf{C}^d$, $\frac{1}{\sqrt{18}d} \|\cdot\|_1 \leq \|\cdot\|_{\underline{\mathbf{LO}}} \leq \|\cdot\|_{\underline{\mathbf{LOCC}}} \leq \|\cdot\|_1$ and $\frac{1}{d} \|\cdot\|_1 \leq \|\cdot\|_{\underline{\mathbf{SEP}}} \leq \|\cdot\|_{\underline{\mathbf{PPT}}} \leq \|\cdot\|_1$. → What about typical behaviours?

Unbounded gap between LO and one-way LOCC measurements

E a d/2-dimensional subspace of \mathbb{C}^d . U_1, \ldots, U_d independent Haar-distributed unitaries on \mathbb{C}^d . \rightarrow Random states $\rho_i = U_i \frac{P_E}{d/2} U_i^{\dagger}$ and $\sigma_i = U_i \frac{P_{E^{\perp}}}{d/2} U_i^{\dagger}$, $1 \leqslant i \leqslant d$, on \mathbb{C}^d .

 $\{|1\rangle, \dots, |d\rangle\}$ an orthonormal basis of \mathbb{C}^d .

 \rightarrow Random states $\rho = \frac{1}{d} \sum_{i=1}^{d} |i\rangle\langle i| \otimes \rho_i$ and $\sigma = \frac{1}{d} \sum_{i=1}^{d} |i\rangle\langle i| \otimes \sigma_i$ on $\mathbf{C}^d \otimes \mathbf{C}^d$.

Theorem 4.1. There exist universal constants $c_0, C > 0$ s.t. with probability greater than $1 - e^{-c_0 d}$,

$$\|\rho - \sigma\|_{\underline{\mathbf{LOCC}}} = 2 \text{ and } \|\rho - \sigma\|_{\underline{\mathbf{LO}}} \leqslant \frac{C}{\sqrt{d}}.$$

Examples of state pairs that local measurements can distinguish perfectly if one-way classical communication is allowed between the two parties, but very poorly if not.

Main steps in the proof:

• $\|\rho - \sigma\|_{\underline{\mathbf{LOCC}}} = \frac{1}{d} \sum_{i=1}^{d} \|\rho_i - \sigma_i\|_1$, and for each $1 \leqslant i \leqslant d$, $\|\rho_i - \sigma_i\|_1 = 2$. • $\|\rho - \sigma\|_{\underline{\mathbf{LO}}} = \frac{1}{d} \sup \left\{ \sum_{i=1}^{d} \|\rho_i - \sigma_i\|_{\mathrm{M}} : \mathrm{M} \ \mathrm{POVM} \ \mathrm{on} \ \mathbf{C}^d \right\}$

- \star Existence of a net \mathcal{R} of "reasonable" size in the set of POVMs on \mathbb{C}^d .
- * For each M $\in \mathcal{R}$ and each $1 \leq i \leq d$, $\mathbf{E} \| \rho_i \sigma_i \|_{\mathbf{M}} \leq 2/\sqrt{d}$ [1].
- \star Berstein type bound on the large deviation probability from its average of a sum of independent ψ_1 random variables [3].

Applications to quantum data-locking: The states ρ and σ exhibit characteristic features of data-locking states [5, 7], i.e. states whose accessible mutual information (the maximum classical mutual information achievable by local measurements) drastically underestimates their quantum mutual information.

Typical performance of LOCC, SEP and PPT measurements in distinguishing two bipartite states

Theorem 5.1. There exist universal constants $c_0, c, C > 0$ s.t. for ρ, σ random states on $\mathbb{C}^d \otimes \mathbb{C}^d$ (picked independently and uniformly), with probability greater than $1 - e^{-c_0 d^2}$,

$$c \leqslant \|\rho - \sigma\|_{\underline{\mathbf{PPT}}} \leqslant C \ \ \text{and} \ \ \frac{c}{\sqrt{d}} \leqslant \|\rho - \sigma\|_{\underline{\mathbf{LOCC}}} \Rightarrow \leqslant \|\rho - \sigma\|_{\underline{\mathbf{LOCC}}} \leqslant \|\rho - \sigma\|_{\underline{\mathbf{SEP}}} \leqslant \frac{C}{\sqrt{d}}.$$

In comparison, $\|\rho - \sigma\|_{\mathbf{ALL}} = \|\rho - \sigma\|_1$ is typically of order 1. So the PPT constraint only affects observers' discriminating ability by a constant factor, whereas the LOCC or SEP constraints imply a dimensional loss. \rightarrow Data-hiding is generic [9] (e.g. there exists a set of e^{cd} states on $\mathbb{C}^d \otimes \mathbb{C}^d$, for some universal constant c > 0, which are pairwise data-hiding).

Main steps in the proof:

• Estimate on the mean-width of the convex bodies associated to \overline{PPT} , \overline{SEP} and \overline{LOCC} on $C^d \otimes C^d$: $\begin{cases} K_{\underline{\mathbf{PPT}}} = [-\mathrm{Id}, \mathrm{Id}] \cap [-\mathrm{Id}, \mathrm{Id}]^{\Gamma} \\ K_{\underline{\mathbf{SEP}}} = \{2\mathbf{R}^{+}\mathcal{S} - \mathrm{Id}\} \cap -\{2\mathbf{R}^{+}\mathcal{S} - \mathrm{Id}\} \end{cases}, \text{ therefore } \begin{cases} w(K_{\underline{\mathbf{PPT}}}) \simeq d \\ w(K_{\underline{\mathbf{SEP}}}) \simeq \sqrt{d} \end{cases}, \text{ and the size of } K_{\underline{\mathbf{LOCC}}} \text{ is } \end{cases}$ comparable to that of K_{SEP} (geometric arguments [16, 14, 2]: volume of symmetrizations and intersections). • ρ , σ independent uniformly distributed states on $\mathbb{C}^d \otimes \mathbb{C}^d$:

* Estimate on the expected value E of $\|\rho - \sigma\|_{\mathbf{M}}$: by comparing averages over different ensembles of traceless random matrices, $\mathbf{E} \simeq w(K_{\mathbf{M}})/d$.

* Estimate on the probability that $\|\rho - \sigma\|_{\mathbf{M}}$ deviates from **E**: by concentration of measure for lipschitz functions on a sphere $\mathbf{P}(|\|\rho - \sigma\|_{\mathbf{M}} - \mathbf{E}| > t) \leq e^{-cd^2t^2}$.

Applications to quantum data-hiding: E a random $d^2/2$ -dimensional subspace of $\mathbf{C}^d \otimes \mathbf{C}^d$.

$$\rho = \frac{P_E}{d^2/2} \text{ and } \sigma = \frac{P_{E^{\perp}}}{d^2/2} \text{ are s.t. } \|\rho - \sigma\|_{\underline{\mathbf{ALL}}} = 2, \text{ and with high probability } \begin{cases} \|\rho - \sigma\|_{\underline{\mathbf{PPT}}} \simeq 1 \\ \|\rho - \sigma\|_{\underline{\mathbf{SEP}}} \simeq 1/\sqrt{d} \end{cases}.$$

→ Examples of orthogonal states that are with high probability data-hiding for SEP POVMs but not datahiding for PPT POVMs (in contrast with Werner states which are equally SEP and PPT data-hiding).

Summary, generalizations and open questions

Norm hierarchy	$\ \cdot\ _{\underline{\mathbf{LO}}} \leqslant \ \cdot\ _{\underline{\mathbf{LO}}}$	$\underline{\mathrm{DCC}}^{ ightarrow} \ \leqslant \ \ \cdot\ _{\underline{\mathbf{L}}}$	$\underline{\text{OCC}} \leq \ \cdot\ _{\underline{S}}$	$\underline{\mathrm{SEP}} \leqslant \ \cdot\ $	$\underline{\mathrm{PPT}} \ \leqslant \ \ \cdot\ _{\underline{\mathbf{A}}}$	LL
Existing unbounded gap?	yes	yes	?	yes	yes	
Generic unbounded gap?	?	no	no	yes	no	

• Generalizations to the multipartite case:

On $(\mathbf{C}^d)^{\otimes k}$ with k fixed and $d \to +\infty$ (small number of large subsystems):

 $\star \|\rho - \sigma\|_{\mathbf{PPT}}$ is of order 1, as $\|\rho - \sigma\|_{\mathbf{ALL}}$, whereas $\|\rho - \sigma\|_{\mathbf{SEP}}$ is of order $1/\sqrt{d^{k-1}}$.

* Imposing biseparability across every bipartition is roughly the same as imposing biseparability across one bipartition, while imposing full separability is a much tougher constraint.

 \rightarrow But what about the opposite high-dimensional setting, i.e. $k \rightarrow +\infty$ and d fixed (large number of small subsystems)?

• Generically, two-way over one-way classical communication does not present a marked improvement, but does one-way over no classical communication gives a clear advantage?

 \rightarrow Is the typical behaviour of $\|\cdot\|_{\mathbf{LO}}$ of the same order as $\|\cdot\|_{\mathbf{LOCC}}$ or much smaller? [4]

• Typical behaviour of other "filtered through measurements" distances, such as measured relative entropy or measured fidelity [15] (and their regularised versions)?

References

- [1] G. Aubrun, C. Lancien, "Zonoids and sparsification of quantum measurements".
- [2] G. Aubrun, S.J. Szarek, "Tensor product of convex sets and the volume of separable states on N qudits".
- [3] D. Chafaï, O. Guédon, G. Lecué, A. Pajor, Interactions between compressed sensing, random matrices and high dimensional geometry.
- [4] E. Chitambar, M-H. Hsieh, "Asymptotic state discrimination and a strict hierarchy in distinguishability norms".
- [5] D.P. DiVincenzo, M. Horodecki, D. Leung, J. Smolin, B.M. Terhal, "Locking classical correlation in quantum states".
- [6] **D.P. DiVincenzo, D. Leung, B.M. Terhal**, "Quantum Data Hiding".
- [7] F. Dupuis, J. Florjanczyk, P. Hayden, D. Leung, "Locking classical information".
- [8] **T. Eggeling, R.F. Werner**, "Hiding classical data in multi-partite quantum states".
- [9] P. Hayden, D. Leung, P. Shor, A. Winter, "Randomizing quantum states: Constructions and applications".
- [10] **C.W. Helstrom**, Quantum detection and estimation theory.
- [11] **A.S. Holevo**, "Statistical decision theory for quantum systems".
- [12] C. Lancien, A. Winter, "Distinguishing multi-partite states by local measurements".
- [13] W. Matthews, S. Wehner, A. Winter, "Distinguishability of quantum states under restricted families of measurements with an application to data hiding".
- [14] V.D. Milman, A. Pajor, "Entropy and asymptotic geometry of non-symmetric convex bodies".
- [15] M. Piani, "Relative entropy of entanglement and restricted measurements".
- [16] **G. Pisier**, The Volume of Convex Bodies and Banach Spaces Geometry.