Locally restricted POVMs on a multipartite quantum system
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1 Distinguishability norms and quantum state discrimination

System that can be in two quantum states, p or o, with equal prior probabilities.
Task: Decide in which one it 1s most likely, based on the accessible experimental data, 1.e. on the outcome of
a POVM M = (M;);cs performed on it (only one sample available — single observation).
Optimal strategy: Whenever outcome ¢ is obtained, guess p if Tr(pM;) > Tr(cM;), and o otherwise.
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%p - %a‘ e Bias of the POVM M on the state pair (p, o) [13].

2 Distinguishability norms and convex geometry

e POVM M = (M;);c7 on C% {M; : i € I} positive operators on C¢ s.t. ZM@ =
el
e Associated distinguishability (semi-)norm: for any Hermitian A on C%, ||A|[y := Z| Tr (AM;) !
el
e Associated convex body K);: dual of the unit ball for || - || (i.e. unit ball for the norm dual to || - ||p)

e Width of K in a given direction: < - ™
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for A uniformly distributed on the Hilbert-Schmidt norm unit sphere.
Figure 1: Width of K in the direction A

e For a whole set M of POVMs on Cd:

the associated distinguishability (semi-)norm is defined as || - [|pg ;= sup || - ||ars
o MeM

so that the associated convex body becomes Kpj = conv U Ky
MeM

3 Locally restricted measurements on a multipartite quantum system

Problem: Seminal observation in quantum state discrimination [10, 11]: || - [[ar, = || - |I1-
— For any two orthogonal quantum states, there exists a (global) POVM which perfectly discriminates them.
But on a composite system, shared by several parties, there are locality constraints on the set M of POVMs
that experimenters are able to implement.
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— How do these restrictions affect their distinguishing power? That is, do we have || - ||pgf >~ || - ||1 or
|- lm < || - |l1 when the local dimensions grow?

Motivations:

e Existence of data-hiding states on multipartite systems [6, 8], 1.e. states that would be well distinguished
by a suitable global measurement but that are barely distinguishable by any local measurement.
Ex: Completely symmetric and antisymmetric states on C? ® C%, ¢ = gL d(Id + F)and a = 1_ Z—(ld = F).
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— Is this phenomenon generic or exceptional?
e Bounds valid for any Hermitian: very wide of the mark but known to be close from optimal [12].

Ex: On C? ® C, ﬁ” I <|[llLo < llLocc < |- Hland—H <[ -llsgp < [ [[ppT < - [l1-
— What about typical behaviours?

4 Unbounded gap between LO and one-way LOCC measurements

FE a d/2-dimensional subspace of Ccl. U 1., Uy independent Haar-distributed unitaries on C¢.

— Random states p; = UZf/EQU;L and o; = Uj d% U]L i < d, on C.
{|1),...,|d)} an orthonormal basis of CZ.
d
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— Random states p = - Z i) (| ® p; and 0 = gz i)(i| ® o; on C% ® CC.

Theorem 4.1. There exist universal constants cy, C > 0 s.t. with probability greater than 1 — e cod,
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Examples of state pairs that local measurements can distinguish perfectly if one-way classical communica-
tion 1s allowed between the two parties, but very poorly if not.

Main steps in the proof:

d
1 .
¢ |p—ollLocc = EZ |lpi — oill1, and for each 1 < i < d, ||p; — 7|1 = 2.
Z:ig \
1
e llp—ollLo = Zsup > llpi — ol : MPOVMon C*
i=1 )

x Existence of a net R of “reasonable” size in the set of POVMs on C.

« Foreach M € R and each 1 < i < d, E|p; — |l < 2/Vd [11.

* Berstein type bound on the large deviation probability from its average of a sum of independent /1 random
variables [3].

Applications to quantum data-locking: The states p and o exhibit characteristic features of data-locking
states [5, 7], 1.e. states whose accessible mutual information (the maximum classical mutual information
achievable by local measurements) drastically underestimates their quantum mutual information.
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S Typical performance of LOCC, SEP and PPT measurements in dis-
tinguishing two bipartite states

Theorem 5.1. There exist universal constants cy,c,C' > 0 s.t. for p, o random states on Cé g Cd (picked
2
independently and uniformly), with probability greater than 1 — e~ od”,

o and 2 — o2 g .
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In comparison, ||p — = ||p— o||; is typically of order 1. So the PPT constraint only affects observers’
discriminating ability by a constant factor, whereas the LOCC or SEP constraints imply a dimensional loss.
— Data-hiding 1s generic [9] (e.g. there exists a set of e states on C? @ C?, for some universal constant
c > 0, which are pairwise data-hiding).

Main steps in the proof:
e Estimate on the mean-width of the convex bodies associated to PPT, SEP and LOCC on Ccd g Cd
Kppr = [-1d, 1d] N [~1d, Id]" K ~
ppT = [—Id, Id] N [-1d, Id]  therefore w(Kppr)
Kegp = {2RTS — Id} N —{2R*S — 1d} w(Kgpp) ~ Vd
comparable to that of Kqep (geometric arguments [16, 14, 2]: volume of symmetrizations and intersections).

, and the size of K1,0cc 18

e o, 0 independent uniformly distributed states on C? g

* Estimate on the expected value E of ||p — o||pg: by comparing averages over different ensembles of trace-
less random matrices, E ~ w(Kpg)/d. -

» Estimate on the probability that ||p — o||n deviates from E: by concentration of measure for lipschitz

functions on a sphere P(|||p — ollpp — E| > ¢) < e—cd't’,

Applications to quantum data-hiding: F a random d”/2-dimensional subspace of Cc g Cd.

P P S .. Jllp—ollppr =1
n= d2—72 and o = dQ—E/E are s.t. ||p — o|| AL, = 2, and with high probability 1o OHSE—PZ |V

— Examples of orthogonal states that are with high probability data-hiding for SEP POVMs but not data-
hiding for PPT POVMs (in contrast with Werner states which are equally SEP and PPT data-hiding).

6 Summary, generalizations and open questions

Norm hierarchy | || llLo < | -llocc < |'llocc < [[-llsep < [ llppTr < |- [ALL
Existing 9
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e Generalizations to the multipartite case:
On (C%)®* with k fixed and d — +oo (small number of large subsystems):
* ||p — ollppr is of order 1, as ||p — o|| oL Whereas ||p — o||ggp is of order 1/vdF—1.
* Imposing biseparability across every bipartition 1s roughly the same as imposing biseparability across one
bipartition, while imposing full separability is a much tougher constraint.

— But what about the opposite high-dimensional setting, i.e. £ — +o00 and d fixed (large number of small
subsystems)?

e Generically, two-way over one-way classical communication does not present a marked improvement, but
does one-way over no classical communication gives a clear advantage?
— Is the typical behaviour of || - |1, of the same order as || - ||[Locc~ or much smaller? [4]

e Typical behaviour of other “filtered through measurements™ distances, such as measured relative entropy
or measured fidelity [15] (and their regularised versions)?
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