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1 Distinguishability norms and quantum state discrimination
System that can be in two quantum states, ρ or σ, with equal prior probabilities.

Task: Decide in which one it is most likely, based on the accessible experimental data, i.e. on the outcome of
a POVM M = (Mi)i∈I performed on it (only one sample available→ single observation).
Optimal strategy: Whenever outcome i is obtained, guess ρ if Tr(ρMi) > Tr(σMi), and σ otherwise.
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= Bias of the POVM M on the state pair (ρ, σ) [13].

2 Distinguishability norms and convex geometry

• POVM M = (Mi)i∈I on Cd: {Mi : i ∈ I} positive operators on Cd s.t.
∑
i∈I

Mi = Id.

• Associated distinguishability (semi-)norm: for any Hermitian ∆ on Cd, ‖∆‖M :=
∑
i∈I

∣∣Tr
(
∆Mi

)∣∣.
• Associated convex body KM: dual of the unit ball for ‖ · ‖M (i.e. unit ball for the norm dual to ‖ · ‖M).

•Width of KM in a given direction:

w(KM,∆) := sup
X∈KM

Tr(∆X) = ‖∆‖M,

for ∆ having unit Hilbert-Schmidt norm.
•Mean-width of KM:

w(KM) := Ew(KM,∆) = E ‖∆‖M,

for ∆ uniformly distributed on the Hilbert-Schmidt norm unit sphere.
Figure 1: Width of KM in the direction ∆

• For a whole set M of POVMs on Cd:
the associated distinguishability (semi-)norm is defined as ‖ · ‖M := sup

M∈M
‖ · ‖M,

so that the associated convex body becomes KM = conv

 ⋃
M∈M

KM

.

3 Locally restricted measurements on a multipartite quantum system
Problem: Seminal observation in quantum state discrimination [10, 11]: ‖ · ‖ALL = ‖ · ‖1.
→ For any two orthogonal quantum states, there exists a (global) POVM which perfectly discriminates them.
But on a composite system, shared by several parties, there are locality constraints on the set M of POVMs
that experimenters are able to implement.

LO ⊂ LOCC→ ⊂ LOCC ⊂ SEP ⊂ PPT ⊂ ALL

→ How do these restrictions affect their distinguishing power? That is, do we have ‖ · ‖M ' ‖ · ‖1 or
‖ · ‖M� ‖ · ‖1 when the local dimensions grow?

Motivations:
• Existence of data-hiding states on multipartite systems [6, 8], i.e. states that would be well distinguished

by a suitable global measurement but that are barely distinguishable by any local measurement.
Ex: Completely symmetric and antisymmetric states on Cd ⊗Cd, ς = 1

d2+d
(Id + F) and α = 1

d2−d(Id− F).

∆ = ς − α is s.t. ‖∆‖LO 6 ‖∆‖LOCC 6 ‖∆‖SEP = ‖∆‖PPT =
4

d + 1
� 2 = ‖∆‖1.

→ Is this phenomenon generic or exceptional?
• Bounds valid for any Hermitian: very wide of the mark but known to be close from optimal [12].

Ex: On Cd⊗Cd,
1√
18d
‖ · ‖1 6 ‖ · ‖LO 6 ‖ · ‖LOCC 6 ‖ · ‖1 and

1

d
‖ · ‖1 6 ‖ · ‖SEP 6 ‖ · ‖PPT 6 ‖ · ‖1.

→What about typical behaviours?

4 Unbounded gap between LO and one-way LOCC measurements
E a d/2-dimensional subspace of Cd. U1, . . . , Ud independent Haar-distributed unitaries on Cd.
→ Random states ρi = Ui

PE
d/2
U
†
i and σi = Ui

PE⊥
d/2

U
†
i , 1 6 i 6 d, on Cd.

{|1〉, . . . , |d〉} an orthonormal basis of Cd.

→ Random states ρ =
1

d

d∑
i=1

|i〉〈i| ⊗ ρi and σ =
1

d

d∑
i=1

|i〉〈i| ⊗ σi on Cd ⊗Cd.

Theorem 4.1. There exist universal constants c0, C > 0 s.t. with probability greater than 1− e−c0d,

‖ρ− σ‖LOCC→ = 2 and ‖ρ− σ‖LO 6
C√
d
.

Examples of state pairs that local measurements can distinguish perfectly if one-way classical communica-
tion is allowed between the two parties, but very poorly if not.

Main steps in the proof:

• ‖ρ− σ‖LOCC→ =
1

d

d∑
i=1

‖ρi − σi‖1, and for each 1 6 i 6 d, ‖ρi − σi‖1 = 2.

• ‖ρ− σ‖LO =
1

d
sup


d∑
i=1

‖ρi − σi‖M : M POVM on Cd


? Existence of a netR of “reasonable” size in the set of POVMs on Cd.
? For each M ∈ R and each 1 6 i 6 d, E‖ρi − σi‖M 6 2/

√
d [1].

? Berstein type bound on the large deviation probability from its average of a sum of independent ψ1 random
variables [3].

Applications to quantum data-locking: The states ρ and σ exhibit characteristic features of data-locking
states [5, 7], i.e. states whose accessible mutual information (the maximum classical mutual information
achievable by local measurements) drastically underestimates their quantum mutual information.

5 Typical performance of LOCC, SEP and PPT measurements in dis-
tinguishing two bipartite states

Theorem 5.1. There exist universal constants c0, c, C > 0 s.t. for ρ, σ random states on Cd ⊗ Cd (picked
independently and uniformly), with probability greater than 1− e−c0d2,

c 6 ‖ρ− σ‖PPT 6 C and
c√
d
6 ‖ρ− σ‖LOCC→ 6 ‖ρ− σ‖LOCC 6 ‖ρ− σ‖SEP 6

C√
d
.

In comparison, ‖ρ−σ‖ALL = ‖ρ−σ‖1 is typically of order 1. So the PPT constraint only affects observers’
discriminating ability by a constant factor, whereas the LOCC or SEP constraints imply a dimensional loss.
→ Data-hiding is generic [9] (e.g. there exists a set of ecd states on Cd ⊗ Cd, for some universal constant
c > 0, which are pairwise data-hiding).

Main steps in the proof:
• Estimate on the mean-width of the convex bodies associated to PPT, SEP and LOCC on Cd ⊗Cd:{
KPPT = [−Id, Id] ∩ [−Id, Id]Γ

KSEP = {2R+S − Id} ∩ −{2R+S − Id}
, therefore

{
w(KPPT) ' d

w(KSEP) '
√
d

, and the size of KLOCC is

comparable to that of KSEP (geometric arguments [16, 14, 2]: volume of symmetrizations and intersections).
• ρ, σ independent uniformly distributed states on Cd ⊗Cd:
? Estimate on the expected value E of ‖ρ−σ‖M: by comparing averages over different ensembles of trace-

less random matrices, E ' w(KM)/d.
? Estimate on the probability that ‖ρ − σ‖M deviates from E: by concentration of measure for lipschitz

functions on a sphere P
(∣∣‖ρ− σ‖M − E

∣∣ > t
)
6 e−cd

2t2.

Applications to quantum data-hiding: E a random d2/2-dimensional subspace of Cd ⊗Cd.

ρ = PE
d2/2

and σ =
PE⊥
d2/2

are s.t. ‖ρ− σ‖ALL = 2, and with high probability

{
‖ρ− σ‖PPT ' 1

‖ρ− σ‖SEP ' 1/
√
d

.

→ Examples of orthogonal states that are with high probability data-hiding for SEP POVMs but not data-
hiding for PPT POVMs (in contrast with Werner states which are equally SEP and PPT data-hiding).

6 Summary, generalizations and open questions

Norm hierarchy ‖ · ‖LO 6 ‖ · ‖LOCC→ 6 ‖ · ‖LOCC 6 ‖ · ‖SEP 6 ‖ · ‖PPT 6 ‖ · ‖ALL

Existing
unbounded gap?

yes yes ? yes yes

Generic
unbounded gap?

? no no yes no

• Generalizations to the multipartite case:
On (Cd)⊗k with k fixed and d→ +∞ (small number of large subsystems):
? ‖ρ− σ‖PPT is of order 1, as ‖ρ− σ‖ALL, whereas ‖ρ− σ‖SEP is of order 1/

√
dk−1.

? Imposing biseparability across every bipartition is roughly the same as imposing biseparability across one
bipartition, while imposing full separability is a much tougher constraint.
→ But what about the opposite high-dimensional setting, i.e. k → +∞ and d fixed (large number of small
subsystems)?

• Generically, two-way over one-way classical communication does not present a marked improvement, but
does one-way over no classical communication gives a clear advantage?
→ Is the typical behaviour of ‖ · ‖LO of the same order as ‖ · ‖LOCC→ or much smaller? [4]

• Typical behaviour of other “filtered through measurements” distances, such as measured relative entropy
or measured fidelity [15] (and their regularised versions)?
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