Quantum expanders – Random constructions & Applications

Based on the works:

- arXiv:1906.11682 (with David Pérez-Garcia)
 - arXiv:2302.07772 (with Pierre Youssef)
 - arXiv:2409.17971

Cécilia Lancien

Institut Fourier Grenoble & CNRS

LMB Functional Analysis Seminar – October 7 2025

Plan

- Classical and quantum expanders: definitions and motivations
- Random constructions of expanders
- Applications and perspectives

Classical expanders

G a (directed or undirected) d-biregular graph on n vertices.

→ *d* incoming and *d* outgoing edges at each vertex

A its (normalized) adjacency matrix, i.e. the $n \times n$ matrix s.t. $A_{kl} = e(l \rightarrow k)/d$ for all $1 \leqslant k, l \leqslant n$. number of edges from vertex l to vertex $k \blacktriangleleft$

 $\lambda_1(A),\ldots,\lambda_n(A)$ eigenvalues of A, ordered s.t. $|\lambda_1(A)|\geqslant \cdots \geqslant |\lambda_n(A)|$.

G biregular \Rightarrow *A* bistochastic \Rightarrow $\lambda_1(A) = 1$, with associated eigenvector the uniform probability *u*. The *spectral expansion parameter* of *G* is $\lambda(G) := |\lambda_2(A)|$. $(1/n,...,1/n) = \blacktriangleleft$

Observation: $\lambda(G) = |\lambda_1(A - J)|$, where J is the adjacency matrix of the *complete graph* on n vertices, i.e. the $n \times n$ matrix whose entries are all equal to 1/n.

 $\longrightarrow \lambda(G)$ is a distance measure between G and the complete graph.

Classical expanders

G a (directed or undirected) d-biregular graph on n vertices.

□ d incoming and d outgoing edges at each vertex

A its (normalized) adjacency matrix, i.e. the $n \times n$ matrix s.t. $A_{kl} = e(l \rightarrow k)/d$ for all $1 \le k, l \le n$. number of edges from vertex l to vertex $k \leftarrow$

 $\lambda_1(A), \ldots, \lambda_n(A)$ eigenvalues of A, ordered s.t. $|\lambda_1(A)| \ge \cdots \ge |\lambda_n(A)|$.

G biregular \Rightarrow A bistochastic $\Rightarrow \lambda_1(A) = 1$, with associated eigenvector the uniform probability u. The spectral expansion parameter of G is $\lambda(G) := |\lambda_2(A)|$. $(1/n,\ldots,1/n)=\blacktriangleleft$

Observation: $\lambda(G) = |\lambda_1(A - J)|$, where *J* is the adjacency matrix of the *complete graph* on *n* vertices, i.e. the $n \times n$ matrix whose entries are all equal to 1/n.

 $\longrightarrow \lambda(G)$ is a distance measure between G and the complete graph.

Definition [Classical expander (informal)]

A d-biregular graph G on n vertices is an expander if it is sparse (i.e. $d \ll n$) and spectrally expanding (i.e. $\lambda(G) \ll 1$).

 \longrightarrow G is both 'economical' and 'resembling' the complete graph.

For instance, a random walk supported on G converges fast to equilibrium:

For any probability p on $\{1,\ldots,n\}$, $\forall q \in \mathbb{N}$, $||A^qp-u||_1 \leq \sqrt{n}\lambda(G)^q$.

 \rightarrow exponential convergence, at rate $|\log \lambda(G)|$

Quantum analogue of the transition matrix associated to a biregular graph

Classical - Quantum correspondence:

- $p \in \mathbf{R}^n$ probability vector $\iff \rho \in \mathcal{M}_n(\mathbf{C})$ quantum state \downarrow self-adjoint positive semidefinite trace 1 matrix
- $A: \mathbf{R}^n \to \mathbf{R}^n$ transition matrix $\longleftrightarrow \Phi: \mathcal{M}_n(\mathbf{C}) \to \mathcal{M}_n(\mathbf{C})$ quantum channel

 Let \to completely positive (CP) trace-preserving (TP) linear map
- *G* biregular: *A* leaves *u* invariant \longleftrightarrow Φ unital: Φ leaves I/n invariant \longleftrightarrow maximally mixed state

Quantum analogue of the transition matrix associated to a biregular graph

Classical - Quantum correspondence:

• $p \in \mathbf{R}^n$ probability vector $\longleftrightarrow \rho \in \mathcal{M}_n(\mathbf{C})$ quantum state

lack + self-adjoint positive semidefinite trace 1 matrix $lack A: \mathbf{R}^n o \mathbf{R}^n$ transition matrix $\Longleftrightarrow \Phi: \mathcal{M}_n(\mathbf{C}) o \mathcal{M}_n(\mathbf{C})$ quantum channel

completely positive (CP) trace-preserving (TP) linear map

• *G* biregular: *A* leaves *u* invariant $\longleftrightarrow \Phi$ unital: Φ leaves I/n invariant $\vdash_{\blacktriangleright}$ maximally mixed state

- maximally mixed

Question: What is the analogue of the degree in the quantum setting?

Answer: The Kraus rank.

Given a CP map Φ on $\mathcal{M}_n(\mathbf{C})$, a *Kraus representation* of Φ is of the form:

$$\Phi: X \in \mathcal{M}_n(\mathbf{C}) \mapsto \sum_{i=1}^d K_i X K_i^* \in \mathcal{M}_n(\mathbf{C}), \text{ where } K_1, \dots, K_d \in \mathcal{M}_n(\mathbf{C}). \quad (\star)$$

$$\downarrow \quad \text{Kraus operators of } \Phi$$

The minimal d s.t. Φ can be written as (\star) is the $Kraus\ rank$ of Φ (it is always at most n^2). [Note: Φ is TP iff $\sum_{i=1}^{d} K_i^* K_i = I$. Φ is unital iff $\sum_{i=1}^{d} K_i K_i^* = I$.]

Indeed, the degree and the Kraus rank both quantify the 1-iteration spreading:

- G a degree d graph: If $|\operatorname{supp}(p)| = 1$, then $|\operatorname{supp}(Ap)| \leq d$.
- Φ a Kraus rank d quantum channel: If $\operatorname{rank}(\rho) = 1$, then $\operatorname{rank}(\Phi(\rho)) \leqslant d$.

Quantum expanders

 Φ a Kraus rank d unital quantum channel on $\mathcal{M}_n(\mathbf{C})$.

$$\lambda_1(\Phi),\dots,\lambda_{n^2}(\Phi) \text{ eigenvalues of } \Phi, \text{ ordered s.t. } |\lambda_1(\Phi)| \geqslant \dots \geqslant |\lambda_{n^2}(\Phi)|.$$

 Φ TP and unital $\Rightarrow \lambda_1(\Phi) = 1$, with associated eigenstate the maximally mixed state I/n. The spectral expansion parameter of Φ is $\lambda(\Phi) := |\lambda_2(\Phi)|$.

Observation: $\lambda(\Phi) = |\lambda_1(\Phi - \Pi)|$, where Π is the *maximally mixing channel* on $\mathcal{M}_n(\mathbf{C})$, i.e. $\Pi: X \in \mathcal{M}_n(\mathbf{C}) \mapsto \operatorname{Tr}(X) I/n \in \mathcal{M}_n(\mathbf{C})$.

 $\longrightarrow \lambda(\Phi)$ is a distance measure between Φ and the maximally mixing channel.

Quantum expanders

- Φ a Kraus rank d unital quantum channel on $\mathcal{M}_n(\mathbf{C})$.
- $\lambda_1(\Phi), \dots, \lambda_{n^2}(\Phi) \text{ eigenvalues of } \Phi, \text{ ordered s.t. } |\lambda_1(\Phi)| \geqslant \dots \geqslant |\lambda_{n^2}(\Phi)|.$
- Φ TP and unital $\Rightarrow \lambda_1(\Phi) = 1$, with associated eigenstate the maximally mixed state I/n. The spectral expansion parameter of Φ is $\lambda(\Phi) := |\lambda_2(\Phi)|$.
- **Observation:** $\lambda(\Phi) = |\lambda_1(\Phi \Pi)|$, where Π is the maximally mixing channel on $\mathcal{M}_n(\mathbf{C})$, i.e.
- $\Pi: X \in \mathcal{M}_n(\mathbf{C}) \mapsto \operatorname{Tr}(X) I/n \in \mathcal{M}_n(\mathbf{C}).$
- $\longrightarrow \lambda(\Phi)$ is a distance measure between Φ and the maximally mixing channel.

Definition [Quantum expander (informal)]

A Kraus rank d unital quantum channel Φ on $\mathcal{M}_n(\mathbf{C})$ is an *expander* if it is sparse (i.e. $d \ll n^2$) and spectrally expanding (i.e. $\lambda(\Phi) \ll 1$).

- $\longrightarrow \Phi$ is both 'economical' and 'resembling' the maximally mixing channel.
- For instance, the dynamics associated to Φ converges fast to equilibrium:
- For any state ρ on \mathbf{C}^n , $\forall \ q \in \mathbf{N}, \ \|\Phi^q(\rho) I/n\|_1 \leqslant \sqrt{n}\lambda(\Phi)^q$.
 - \vdash exponential convergence, at rate $|\log \lambda(\Phi)|$

Plan

- Classical and quantum expanders: definitions and motivations
- Random constructions of expanders
- Applications and perspectives

Constructions of optimal classical expanders

Fact: For any undirected *d*-regular graph G, $\lambda(G) \geqslant 2\sqrt{d-1}/d - o_n(1)$.

 $\longrightarrow G$ is an optimal undirected expander (aka Ramanujan graph) if $\lambda(G) \leqslant 2\sqrt{d-1}/d$.

Question: Do Ramanujan graphs exist?

- Explicit constructions of exactly Ramanujan graphs only for $d = p^m + 1$, p prime.
- 2 Random constructions of almost Ramanujan graphs for all d.
- Existence of exactly Ramanujan graphs for all d.

Constructions of optimal classical expanders

Fact: For any undirected *d*-regular graph G, $\lambda(G) \ge 2\sqrt{d-1}/d - o_n(1)$.

 \longrightarrow G is an optimal undirected expander (aka Ramanujan graph) if $\lambda(G) \leq 2\sqrt{d-1/d}$.

Question: Do Ramanujan graphs exist?

- **1** Explicit constructions of exactly Ramanujan graphs only for $d = p^m + 1$, p prime.
- Random constructions of almost Ramanujan graphs for all d.
- Existence of exactly Ramanujan graphs for all d.

In fact, for large *n*, almost all undirected regular graphs are almost Ramanujan:

Theorem [Uniform random undirected regular graph (Friedman, Bordenave)]

Fix $d \in \mathbb{N}$. Let G be uniformly distributed on the set of undirected d-regular graphs on n vertices.

Then, for all
$$\varepsilon > 0$$
, $\mathbf{P}\left(\lambda(G) \leqslant \frac{2\sqrt{d-1}}{d} + \varepsilon\right) = 1 - o_n(1)$.

Remarks: simpler model of random undirected regular graph

- First proven for the 'doubled edges permutation model': for $d \in \mathbb{N}$ even, pick $\sigma_1, \dots, \sigma_{d/2} \in \mathcal{S}_n$ independent uniformly distributed and let G have edges $\{(k,\sigma_i(k)),(k,\sigma_i^{-1}(k))\}_{1 \le k \le n,1 \le i \le d/2}$.
- Result remains true for G a random directed regular graph and for d growing with n, up to a constant multiplicative factor: $\mathbf{P}(\lambda(G) \leq C/\sqrt{d} + \varepsilon) = 1 - o_n(1)$.

Fact: For any self-adjoint Kraus rank d unital quantum channel Φ , $\lambda(\Phi) \ge 2\sqrt{d-1}/d - o_n(1)$. $\longrightarrow \Phi$ is an optimal self-adjoint expander if $\lambda(\Phi) \le 2\sqrt{d-1}/d$.

Question: Do optimal self-adjoint quantum expanders exist?

First attempts at exhibiting explicit constructions (inspired by classical ones): not optimal.

 \longrightarrow What about random constructions?

Fact: For any self-adjoint Kraus rank d unital quantum channel Φ , $\lambda(\Phi) \geqslant 2\sqrt{d-1}/d - o_n(1)$. $\longrightarrow \Phi$ is an optimal self-adjoint expander if $\lambda(\Phi) \leqslant 2\sqrt{d-1}/d$.

Question: Do optimal self-adjoint quantum expanders exist?

First attempts at exhibiting explicit constructions (inspired by classical ones): not optimal.

— What about random constructions?

Question: How to sample a unital quantum channel randomly?

Idea: Pick $K_1, \ldots, K_d \in \mathcal{M}_n(\mathbf{C})$ at random, under the constraints $\begin{cases} \sum_{i=1}^d K_i^* K_i = I \\ \sum_{i=1}^d K_i K_i^* = I \end{cases}$.

 $\Phi: X \mapsto \sum_{i=1}^d K_i X K_i^*$ is a random Kraus rank (at most) d unital quantum channel on $\mathcal{M}_n(\mathbf{C})$.

Fact: For any self-adjoint Kraus rank d unital quantum channel Φ , $\lambda(\Phi) \geqslant 2\sqrt{d-1}/d - o_n(1)$. $\longrightarrow \Phi$ is an optimal self-adjoint expander if $\lambda(\Phi) \leq 2\sqrt{d-1}/d$.

Question: Do optimal self-adjoint quantum expanders exist?

First attempts at exhibiting explicit constructions (inspired by classical ones): not optimal.

Question: How to sample a unital quantum channel randomly?

Idea: Pick $K_1, \ldots, K_d \in \mathcal{M}_n(\mathbf{C})$ at random, under the constraints $\begin{cases} \sum_{i=1}^d K_i^* K_i = I \\ \sum_{i=1}^d K_i K_i^* = I \end{cases}$.

 $\Phi: X \mapsto \sum_{i=1}^{d} K_i X K_i^*$ is a random Kraus rank (at most) d unital quantum channel on $\mathcal{M}_n(\mathbf{C})$.

Theorem [Paired Haar unitaries as Kraus operators (Hastings)]

Fix $d \in \mathbb{N}$ even. Pick $U_1, \dots, U_{d/2} \in \mathcal{M}_n(\mathbf{C})$ independent Haar unitaries. Let $K_i = \frac{U_i}{\sqrt{d}}, 1 \le i \le \frac{d}{2}$.

The self-adjoint unital quantum channel Φ associated to the K_i 's, K_i^* 's satisfies:

$$\forall \ \varepsilon > 0, \ \mathbf{P}\left(\lambda(\Phi) \leqslant \frac{2\sqrt{d-1}}{d} + \varepsilon\right) = 1 - o_n(1).$$

Fact: For any self-adjoint Kraus rank d unital quantum channel Φ , $\lambda(\Phi) \geqslant 2\sqrt{d-1}/d - o_n(1)$. $\longrightarrow \Phi$ is an optimal self-adjoint expander if $\lambda(\Phi) \leqslant 2\sqrt{d-1}/d$.

Question: Do optimal self-adjoint quantum expanders exist?

First attempts at exhibiting explicit constructions (inspired by classical ones): not optimal.

---- What about random constructions?

Question: How to sample a unital quantum channel randomly?

Idea: Pick $K_1, \ldots, K_d \in \mathcal{M}_n(\mathbf{C})$ at random, under the constraints $\begin{cases} \sum_{i=1}^d K_i^* K_i = I \\ \sum_{i=1}^d K_i K_i^* = I \end{cases}$.

 $\Phi: X \mapsto \textstyle \sum_{i=1}^d K_i X K_i^* \text{ is a random Kraus rank (at most) } \textit{d} \text{ unital quantum channel on } \mathcal{M}_n(\mathbf{C}).$

Theorem [Paired Haar unitaries as Kraus operators (Hastings)]

Fix $d \in \mathbf{N}$ even. Pick $U_1, \ldots, U_{d/2} \in \mathcal{M}_n(\mathbf{C})$ independent Haar unitaries. Let $K_i = \frac{U_i}{\sqrt{d}}, 1 \leqslant i \leqslant \frac{d}{2}$.

The self-adjoint unital quantum channel Φ associated to the K_i 's, K_i^* 's satisfies:

$$\forall \ \varepsilon > 0, \ \mathbf{P}\left(\lambda(\Phi) \leqslant \frac{2\sqrt{d-1}}{d} + \varepsilon\right) = 1 - o_n(1).$$

Question: Can this result be extended to non-self-adjoint random models? to a wider variety of them? to a regime where *d* is not fixed but grows with *n*?

LMB Functional Analysis Seminar - October 7 2025

Fact: For any Kraus rank d unital quantum channel Φ , $\lambda(\Phi) \geqslant 1/\sqrt{d} - o_n(1)$.

Theorem [Haar unitaries as Kraus operators (Pisier, Timhadjelt)]

Pick $U_1,\ldots,U_d\in\mathcal{M}_n(\mathbf{C})$ independent Haar unitaries. Let $K_i=\frac{U_i}{\sqrt{d}},1\leqslant i\leqslant d$.

The unital quantum channel Φ associated to the K_i 's satisfies:

$$\forall \; \epsilon > 0, \; \textbf{P}\left(\lambda(\Phi) \leqslant \frac{1}{\sqrt{\textit{d}}}(1+\epsilon)\right) \geqslant 1 - e^{-c\epsilon n^{1/12}}.$$

Fact: For any Kraus rank d unital quantum channel Φ , $\lambda(\Phi) \geqslant 1/\sqrt{d} - o_n(1)$.

Theorem [Haar unitaries as Kraus operators (Pisier, Timhadjelt)]

Pick $U_1, \ldots, U_d \in \mathcal{M}_n(\mathbf{C})$ independent Haar unitaries. Let $K_i = \frac{U_i}{\sqrt{d}}, 1 \leqslant i \leqslant d$.

The unital quantum channel Φ associated to the K_i 's satisfies:

$$\forall \; \epsilon > 0, \; \mathbf{P} \left(\lambda(\Phi) \leqslant \frac{1}{\sqrt{d}} (1+\epsilon) \right) \geqslant 1 - e^{-c\epsilon n^{1/12}}.$$

Question: Does this remain true for 'less random' unitary Kraus operators?

A probability measure μ on U(n) is a k-design if $\mathbf{E}_{U \sim \mu}[U^{\otimes k}(\cdot)U^{*\otimes k}] = \mathbf{E}_{U \sim \mu_H}[U^{\otimes k}(\cdot)U^{*\otimes k}]$. Haar measure on U(n)

Theorem [2-design unitaries as Kraus operators (Lancien)]

Pick $U_1,\ldots,U_d\in\mathcal{M}_n(\mathbf{C})$ independent 2-design unitaries. Let $K_i=\frac{U_i}{\sqrt{d}},$ $1\leqslant i\leqslant d.$

If $d \ge (\log n)^{8+\delta}$, the unital quantum channel Φ associated to the K_i 's satisfies:

$$\mathbf{P}\left(\lambda(\Phi) \leqslant \frac{2}{\sqrt{d}}\left(1 + \frac{C}{(\log n)^{\delta/6}}\right)\right) \geqslant 1 - \frac{1}{n}.$$

Interest: Nearly optimal quantum expander from random Kraus operators which are sampled according to a simple measure on the unitary group (uniform measure on explicit finite subset).

More random examples of optimal quantum expanders

Need: Extend the notion of expander to non-unital quantum channels (or else, too constraining).

Theorem [Gaussians as Kraus operators (Lancien/Pérez-García)]

Pick
$$G_1,\dots,G_d\in\mathcal{M}_n(\mathbf{C})$$
 independent Gaussians. Let $\tilde{K}_i=\frac{G_i}{\sqrt{d}},\,K_i=\tilde{K}_i\Sigma^{-1/2},\,1\leqslant i\leqslant d.$ i.i.d. Gaussian entries (mean 0, variance $1/n)$ \downarrow \downarrow $=\sum_{j=1}^d \tilde{K}_j^*\tilde{K}_j$ The quantum channel Φ associated to the K_i 's satisfies: $\mathbf{P}\left(\lambda(\Phi)\leqslant\frac{C}{\sqrt{d}}\right)\geqslant 1-e^{-cn}$.

More random examples of optimal quantum expanders

Need: Extend the notion of expander to non-unital quantum channels (or else, too constraining).

Theorem [Gaussians as Kraus operators (Lancien/Pérez-García)]

Pick
$$G_1,\ldots,G_d\in\mathcal{M}_n(\mathbf{C})$$
 independent Gaussians. Let $\tilde{K}_i=\frac{G_i}{\sqrt{d}},\,K_i=\tilde{K}_i\Sigma^{-1/2},\,1\leqslant i\leqslant d.$ i.i.d. Gaussian entries (mean 0, variance $1/n)$

Question: Does this remain true for 'less random' Kraus operators with independent entries?

Theorem [Sparse random matrices as Kraus operators (Lancien/Youssef)]

ightharpoonup e.g. adjacency matrix of d-biregular graph G on n vertices s.t. $\lambda(G) \leq C/\sqrt{d}$

Fix $A \in \mathcal{M}_n(\mathbf{R})$ a bistochastic matrix s.t. $|\lambda_2(A)| \leqslant \frac{C}{\sqrt{d}}$. Let $W \in \mathcal{M}_n(\mathbf{C})$ be a random matrix with

independent centered entries s.t. \forall 1 \leqslant k, l \leqslant n, $\mathbf{E}|W_{kl}|^2 = A_{kl}$, $(\mathbf{E}|W_{kl}|^p)^{1/p} \leqslant \mathbf{C}'p^\beta A_{kl}$, $p \in \mathbf{N}$. [$\beta = 0$: bounded, $\beta = 1/2$: sub-Gaussian, $\beta = 1$: sub-exponential] \blacktriangleleft

Pick $W_1, \ldots, W_d \in \mathcal{M}_n(\mathbf{C})$ independent copies of W. Let $\tilde{K}_i = \frac{W_i}{\sqrt{d}}, K_i = \tilde{K}_i \Sigma^{-1/2}, 1 \leqslant i \leqslant d$.

If $d \ge (\log n)^8$, the quantum channel Φ associated to the K_i 's satisfies: $\mathbf{P}\left(\lambda(\Phi) \le \frac{C_{\beta}}{\sqrt{d}}\right) \ge 1 - \frac{1}{n}$.

Interest: Nearly optimal guantum expanders from random Kraus operators which are sparse and whose non-zero entries have any distribution following the moments' growth assumption.

Proof idea to show that $\mathbf{E}\lambda(\Phi) \leqslant C/\sqrt{d}$

fixed state of Φ ◆

Goal: Upper bound $\mathbf{E}|\lambda_2(\Phi)| = \mathbf{E}|\lambda_1(\Phi - \Pi_{\rho^*})|$, where $\Pi_{\rho_*} : X \in \mathcal{M}_n(\mathbf{C}) \mapsto \mathrm{Tr}(X)\dot{\rho_*} \in \mathcal{M}_n(\mathbf{C})$. First step: Upper bound $\mathbf{E}|\lambda_1(\Phi - \mathbf{E}(\Phi))|$ (and then show that $\mathbf{E}(\Phi)$ is close to Π_{ρ^*}).

Proof idea to show that $\mathbf{E}\lambda(\Phi) \leqslant C/\sqrt{d}$

fixed state of Φ ◀

Goal: Upper bound $\mathbf{E}[\lambda_2(\Phi)] = \mathbf{E}[\lambda_1(\Phi - \Pi_{\rho^*})]$, where $\Pi_{\rho_*} : X \in \mathcal{M}_n(\mathbf{C}) \mapsto \mathrm{Tr}(X)\dot{\rho}_* \in \mathcal{M}_n(\mathbf{C})$. First step: Upper bound $\mathbf{E}[\lambda_1(\Phi - \mathbf{E}(\Phi))]$ (and then show that $\mathbf{E}(\Phi)$ is close to Π_{ρ^*}).

Observations:

- $\bullet |\lambda_1(\Psi)| \leqslant s_1(\Psi) = \|\Psi\|_{\infty}.$
- $\|\Psi\|_{\infty} = \|M_{\Psi}\|_{\infty}$, where for $\Psi: X \mapsto \sum_{i=1}^{d} K_i X L_i^*$, $M_{\Psi} = \sum_{i=1}^{d} K_i \otimes \overline{L}_i$.

[Identification $\Psi : \mathcal{M}_n(\mathbf{C}) \to \mathcal{M}_n(\mathbf{C}) \equiv M_{\Psi} : \mathbf{C}^n \otimes \mathbf{C}^n \to \mathbf{C}^n \otimes \mathbf{C}^n$ preserves the operator norm.]

$$\longrightarrow \text{Upper bound } \mathbf{E} \| \underbrace{M_{\Phi} - \mathbf{E}(M_{\Phi})}_{K_{\Phi}} \|_{\infty}, \text{ where } M_{\Phi} = \sum_{i=1}^{d} K_{i} \otimes \bar{K}_{i} \text{ with the } K_{i}\text{'s random.}$$

Proof idea to show that $\mathbf{E}\lambda(\Phi) \leqslant C/\sqrt{d}$

fixed state of Φ ◀

Goal: Upper bound $\mathbf{E}|\lambda_2(\Phi)| = \mathbf{E}|\lambda_1(\Phi - \Pi_{\rho^*})|$, where $\Pi_{\rho_*}: X \in \mathcal{M}_n(\mathbf{C}) \mapsto \mathrm{Tr}(X)\dot{\rho_*} \in \mathcal{M}_n(\mathbf{C})$. First step: Upper bound $\mathbf{E}|\lambda_1(\Phi - \mathbf{E}(\Phi))|$ (and then show that $\mathbf{E}(\Phi)$ is close to Π_{ρ^*}).

Observations:

- $\bullet |\lambda_1(\Psi)| \leqslant s_1(\Psi) = \|\Psi\|_{\infty}.$
- $\|\Psi\|_{\infty} = \|M_{\Psi}\|_{\infty}$, where for $\Psi: X \mapsto \sum_{i=1}^{d} K_i X L_i^*$, $M_{\Psi} = \sum_{i=1}^{d} K_i \otimes \overline{L}_i$.

[Identification $\Psi: \mathcal{M}_n(\mathbf{C}) \to \mathcal{M}_n(\mathbf{C}) \equiv M_{\Psi}: \mathbf{C}^n \otimes \mathbf{C}^n \to \mathbf{C}^n \otimes \mathbf{C}^n$ preserves the operator norm.]

Upper bound $\mathbf{E} \| \underbrace{M_{\Phi} - \mathbf{E}(M_{\Phi})}_{=:X} \|_{\infty}$, where $M_{\Phi} = \sum_{i=1}^{d} K_{i} \otimes \overline{K}_{i}$ with the K_{i} 's random.

Implementation:

- → Haar unitaries, Gaussian matrices
- For concrete models, this can be done by a moments' method:

By Jensen's inequality, we have: $\forall p \in \mathbb{N}, \ \mathbf{E} ||X||_{\infty} \leqslant \mathbf{E} ||X||_{p} \leqslant (\mathbf{E} \operatorname{Tr} |X|^{p})^{1/p}$.

- \longrightarrow Estimate the r.h.s. by Weingarten or Wick calculus and choose $p=p_{n,d}$ that minimizes it.
 - 2-design unitaries, arbitrary sparse random matrices
- For more general models, we use recent operator norm estimates for sums of random matrices with dependencies and non-homogeneity (Brailovskaya/van Handel):

Setting $X = \sum_{i=1}^{d} Z_i$, with $Z_i := K_i \otimes \bar{K}_i - \mathbf{E}(K_i \otimes \bar{K}_i)$, $1 \leq i \leq d$, we have:

$$\mathbf{E}\|X\|_{\infty} \leqslant \|\mathbf{E}(XX^*)\|_{\infty}^{1/2} + \|\mathbf{E}(X^*X)\|_{\infty}^{1/2} + C(\log n)^6 \Big(\|\mathbf{Cov}(X)\|_{\infty}^{1/2} + \Big(\mathbf{E}\max_{1 \leqslant i \leqslant d} \|Z_i\|_{\infty}^2\Big)^{1/2}\Big).$$

 \longrightarrow Estimate all parameters appearing on the r.h.s.

4 D > 4 A > 4 E > 4 E > E 900

Plan

- Classical and quantum expanders: definitions and motivations
- Random constructions of expanders
- Applications and perspectives

Implications for typical decay of correlations in many-body quantum systems

Matrix product states (MPS) form a subset of many-body quantum states.

They are particularly useful because:

- They admit an efficient description: number of parameters that scales linearly rather than exponentially with the number of subsytems.
- They are good approximations of several 'physically relevant' states, such as ground states of gapped local Hamiltonians on 1D systems (Hastings, Landau/Vazirani/Vidick).
 - composed of terms which act non-trivially only on nearby sites spectral gap lower bounded by a constant independent of the number of subsystems

Implications for typical decay of correlations in many-body quantum systems

Matrix product states (MPS) form a subset of many-body quantum states.

They are particularly useful because:

- They admit an efficient description: number of parameters that scales linearly rather than
 exponentially with the number of subsytems.
- They are good approximations of several 'physically relevant' states, such as ground states
 of gapped local Hamiltonians on 1D systems (Hastings, Landau/Vazirani/Vidick).
 - composed of terms which act non-trivially only on nearby sites
 spectral gap lower bounded by a constant independent of the number of subsystems

```
with the distance separating the sites \blacktriangleleft between observables measured on distinct sites \blacktriangleleft
```

Fact: Random (translation-invariant) MPS typically have correlations that decay exponentially fast, with a *small correlation length* (Lancien/Pérez-García).

Proof strategy: Observe that the correlation length is upper bounded by $1/|\log \lambda(\Phi)|$ for Φ a random quantum channel associated to the random MPS (its so-called *transfer operator*).

What about explicit constructions of optimal quantum expanders?
 Important for applications (cryptography, error correction, condensed matter physics, etc).

Seminal constructions required a large amount of randomness.

First step towards *derandomization*: Kraus operators sampled from an explicit finite subset of unitaries or as sparse matrices with independent ± 1 entries.

What about explicit constructions of optimal quantum expanders?
 Important for applications (cryptography, error correction, condensed matter physics, etc).

Seminal constructions required a large amount of randomness.

First step towards derandomization: Kraus operators sampled from an explicit finite subset of unitaries or as sparse matrices with independent ± 1 entries.

• What about identifying the full spectral distribution of random quantum channels?

$$\rho_*$$
 fixed state of Φ , $\Pi_{\rho_*}: X \mapsto \mathsf{Tr}(X)\rho_*$

Given a random Kraus rank d quantum channel Φ on $\mathcal{M}_n(\mathbf{C})$, the eigenvalues of $\Phi - \Pi_{\rho_*}$ are typically inside a segment of half-length $2\sqrt{d-1}/d$ or a disc of radius $1/\sqrt{d}$ for large n.

But how are they distributed inside it?

Full answer in the self-adjoint case (Lancien/Oliveira Santos/Youssef).

Partial conjectures in the non-self-adjoint case (Bruzda/Cappellini/Sommers/Życzkowski).

- What about *explicit constructions* of optimal quantum expanders? Important for applications (cryptography, error correction, condensed matter physics, etc).
 - Seminal constructions required a large amount of randomness.

First step towards derandomization: Kraus operators sampled from an explicit finite subset of unitaries or as sparse matrices with independent ± 1 entries.

- What about identifying the *full spectral distribution* of random quantum channels?
 - ρ_* fixed state of Φ , $\Pi_{\rho_*}: X \mapsto \mathsf{Tr}(X)\rho_* \blacktriangleleft$

Given a random Kraus rank d quantum channel Φ on $\mathcal{M}_n(\mathbf{C})$, the eigenvalues of $\Phi - \Pi_{0}$. are typically inside a segment of half-length $2\sqrt{d-1}/d$ or a disc of radius $1/\sqrt{d}$ for large n. ► self-adjoint case

non-self-adjoint case

But how are they distributed inside it?

Full answer in the self-adjoint case (Lancien/Oliveira Santos/Youssef).

Partial conjectures in the non-self-adjoint case (Bruzda/Cappellini/Sommers/Życzkowski).

 Do the results about the typical spectral gap of random quantum channels remain true when we impose extra symmetries on the model?

- What about *explicit constructions* of optimal quantum expanders? Important for applications (cryptography, error correction, condensed matter physics, etc).
 - Seminal constructions required a large amount of randomness.

First step towards derandomization: Kraus operators sampled from an explicit finite subset of unitaries or as sparse matrices with independent ± 1 entries.

- What about identifying the *full spectral distribution* of random quantum channels?
 - ρ_* fixed state of Φ , $\Pi_{\rho_*}: X \mapsto \mathsf{Tr}(X)\rho_* \blacktriangleleft$

Given a random Kraus rank d quantum channel Φ on $\mathcal{M}_n(\mathbf{C})$, the eigenvalues of $\Phi - \Pi_{0}$. are typically inside a segment of half-length $2\sqrt{d-1}/d$ or a disc of radius $1/\sqrt{d}$ for large n. hon-self-adioint case

self-adjoint case

But how are they distributed inside it?

Full answer in the self-adjoint case (Lancien/Oliveira Santos/Youssef).

Partial conjectures in the non-self-adjoint case (Bruzda/Cappellini/Sommers/Życzkowski).

- Do the results about the typical spectral gap of random quantum channels remain true when we impose extra symmetries on the model?
- What about looking at other, related, notions of expansions, such as geometric ones (Bannink/Briët/Labib/Maassen) or linear-algebraic ones (Li/Qiao/Wigderson/Wigderson/Zhang)?

References

- T. Bannink, J. Briët, F. Labib, H. Maassen. Quasirandom quantum channels. 2020.
- C. Bordenave. A new proof of Friedman's second eigenvalue theorem and its extension to random lifts. 2020.
- T. Brailovskaya, R. van Handel. Universality and sharp matrix concentration inequalities. 2022.
- W. Bruzda, V. Cappellini, H.-J. Sommers, K. Życzkowski. Random quantum operations. 2009.
- J. Friedman. A proof of Alon's second eigenvalue conjecture. 2008.
- M.B. Hastings. Solving gapped Hamiltonians locally. 2006.
- M.B. Hastings. Random unitaries give quantum expanders. 2007.
- C. Lancien. Optimal quantum (tensor product) expanders from unitary designs. 2024.
- C. Lancien, P. Oliveira Santos, P. Youssef. Limiting spectral distribution of random self-adjoint quantum channels. 2024.
- C. Lancien, D. Pérez-García. Correlation length in random MPS and PEPS. 2022.
- C. Lancien, P. Youssef. A note on quantum expanders. 2023.
- Z. Landau, U. Vazirani, T. Vidick. A polynomial-time algorithm for the ground state of 1D gapped local Hamiltonians. 2015.
- Y. Li, Y. Qiao, A. Wigderson, Y. Wigderson, C. Zhang. On linear-algebraic notions of expansion. 2022.
- G. Pisier. Quantum expanders and geometry of operator spaces. 2014.
- S. Timhadjelt. Non-Hermitian expander obtained with Haar distributed unitaries. 2024.