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0 Classical and quantum expanders: definitions and motivations
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Classical expanders

G a (directed or undirected) d-biregular graph on n vertices.
L o incoming and d outgoing edges at each vertex
Aits (normalized) adjacency matrix, i.e. the n x n matrix s.t. Ay = e(/—k)/d forall 1 < k,/ < n.
number of edges from vertex / to vertex k

A1(A),...,An(A) eigenvalues of A, ordered s.t. [A1(A)| = --- = |Aa(A)].

G biregular = A bistochastic = A1 (A) = 1, with associated eigenvector the uniform probability v.
The spectral expansion parameter of G is A(G) := |A2(A)|. (1/n,...,1/n) = <«

Observation: A(G) = |A1(A— J)|, where J is the adjacency matrix of the complete graph on n
vertices, i.e. the n x n matrix whose entries are all equal to 1/n.
— M(G) is a distance measure between G and the complete graph.
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Classical expanders

G a (directed or undirected) d-biregular graph on n vertices.
L o incoming and d outgoing edges at each vertex
Aits (normalized) adjacency matrix, i.e. the n x n matrix s.t. Ay = e(/—k)/d forall 1 < k,/ < n.
number of edges from vertex / to vertex k

A1(A),...,An(A) eigenvalues of A, ordered s.t. [A1(A)| = --- = |Aa(A)].

G biregular = A bistochastic = A1 (A) = 1, with associated eigenvector the uniform probability v.
The spectral expansion parameter of G is A(G) := |A2(A)|. (1/n,...,1/n) = <«

Observation: A(G) = |A1(A— J)|, where J is the adjacency matrix of the complete graph on n
vertices, i.e. the n x n matrix whose entries are all equal to 1/n.
— M(G) is a distance measure between G and the complete graph.

Definition [Classical expander (informal)]
A d-biregular graph G on n vertices is an expander if it is sparse (i.e. d < n) and spectrally

expanding (i.e. A(G) < 1).

— G is both ‘economical’ and ‘resembling’ the complete graph.
For instance, a random walk supported on G converges fast to equilibrium:
For any probability pon {1,...,n},V g € N, ||A%p—ull1 < vV/n(G)7.
exponential convergence, at rate | logA(G)|
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Quantum analogue of the transition matrix associated to a biregular graph

Classical - Quantum correspondence:
@ p € R" probability vector «~ p € M,(C) quantum state
L» self-adjoint positive semidefinite trace 1 matrix
@ A:R" — R transition matrix <~ ® : M,(C) — M,(C) quantum channel
L» completely positive (CP) trace-preserving (TP) linear map
@ Gbiregular: Aleaves u invariant «~» ® unital: ¢ leaves //n invariant
Ls maximally mixed state
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Quantum analogue of the transition matrix associated to a biregular graph

Classical - Quantum correspondence:

@ p € R" probability vector «~ p € M,(C) quantum state

L» self-adjoint positive semidefinite trace 1 matrix
@ A:R" — R transition matrix <~ ® : M,(C) — M,(C) quantum channel
L» completely positive (CP) trace-preserving (TP) linear map
@ Gbiregular: Aleaves u invariant «~» ® unital: ¢ leaves //n invariant
Ls maximally mixed state

Question: What is the analogue of the degree in the quantum setting?

Answer: The Kraus rank.
Given a CP map ® on M,(C), a Kraus representation of ® is of the form:
d
®: X € My(C)— Y KiXK] € My(C), where Ki,...,Kg € Mn(C). (%)
=1 Kraus operators of ®
The minimal d s.t. ® can be written as (%) is the Kraus rank of ® (it is always at most n?).
[Note: ®is TPiff Y9 | KFK; = I. ® is unital iff Y9, KiK* = 1. |

Indeed, the degree and the Kraus rank both quantify the 1-iteration spreading:
@ G adegree d graph: If |supp(p)| = 1, then |supp(Ap)| < d.
@ & aKraus rank d quantum channel: If rank(p) = 1, then rank(®(p)) < d.
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Quantum expanders

¢ a Kraus rank d unital quantum channel on M,(C).
A (D), ..., A 2(P) eigenvalues of ®, ordered s.t. [A1(P)| = --- = |A2(P)].

® TP and unital = A¢(®) = 1, with associated eigenstate the maximally mixed state //n.
The spectral expansion parameter of ® is A(®) := [Ao(P)].

Observation: A(®) = |A{(P — )|, where MM is the maximally mixing channel on M,(C), i.e.
M:Xe M,(C)— Tr(X)I/ne My(C).
— M(®) is a distance measure between ® and the maximally mixing channel.
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Quantum expanders

¢ a Kraus rank d unital quantum channel on M,(C).
A (D), ..., A 2(P) eigenvalues of ®, ordered s.t. [A1(P)| = --- = |A2(P)].

® TP and unital = A¢(®) = 1, with associated eigenstate the maximally mixed state //n.
The spectral expansion parameter of ® is A(®) := [Ao(P)].

Observation: A(®) = |A{(P — )|, where MM is the maximally mixing channel on M,(C), i.e.
M:Xe M,(C)— Tr(X)I/ne My(C).
— M(®) is a distance measure between ® and the maximally mixing channel.

Definition [Quantum expander (informal)]
A Kraus rank d unital quantum channel ® on M,(C) is an expander if it is sparse (i.e. d < n°)
and spectrally expanding (i.e. A(®) < 1).

— & is both ‘economical’ and ‘resembling’ the maximally mixing channel.
For instance, the dynamics associated to ® converges fast to equilibrium:
For any state p on C",V g € N, ||®9(p) — I/n|1 < v/ nA(P)9.

exponential convergence, at rate | log AL(®P)]
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Plan

e Random constructions of expanders
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Constructions of optimal classical expanders

Fact: For any undirected d-regular graph G, A(G) > 2v/d —1/d — op(1).
— G is an optimal undirected expander (aka Ramanujan graph) if M(G) < 2+/d —1/d.
Question: Do Ramanujan graphs exist?
@ Explicit constructions of exactly Ramanujan graphs only for d = p™ + 1, p prime.
@ Random constructions of almost Ramanujan graphs for all d.
© Existence of exactly Ramanujan graphs for all d.
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Constructions of optimal classical expanders

Fact: For any undirected d-regular graph G, A(G) > 2v/d —1/d — op(1).
— G is an optimal undirected expander (aka Ramanujan graph) if M(G) < 2+/d —1/d.
Question: Do Ramanujan graphs exist?
@ Explicit constructions of exactly Ramanujan graphs only for d = p™ + 1, p prime.
@ Random constructions of almost Ramanujan graphs for all d.
© Existence of exactly Ramanujan graphs for all d.

In fact, for large n, almost all undirected regular graphs are almost Ramanujan:

Theorem [Uniform random undirected regular graph (Friedman, Bordenave)]
Fix d € N. Let G be uniformly distributed on the set of undirected d-regular graphs on n vertices.

Then, for alle > 0, P (k(G) < HT_1 —|—8) =1—-0,(1).

Remarks: e simpler model of random undirected regular graph

e First proven for the ‘doubled edges permutation model’: for d € N even, pick &1, ... 10d/2 € Sn
independent uniformly distributed and let G have edges {(k,ci(k)), (k,o; ' (k))}4 <k<ni<i<d)2:
e Result remains true for G a random directed regular graph and for d growing with n, up to a
constant multiplicative factor: P (A(G) < C/v/d+€) =1—o0,(1).
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Constructions of optimal self-adjoint quantum expanders

Fact: For any self-adjoint Kraus rank d unital quantum channel ®, A(®) > 2v/d —1/d — 0,(1).
— & is an optimal self-adjoint expander if A(®) < 2v/d—1/d.

Question: Do optimal self-adjoint quantum expanders exist?
First attempts at exhibiting explicit constructions (inspired by classical ones): not optimal.
— What about random constructions?
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Constructions of optimal self-adjoint quantum expanders

Fact: For any self-adjoint Kraus rank d unital quantum channel ®, A(®) > 2v/d —1/d — 0,(1).
— & is an optimal self-adjoint expander if A(®) < 2v/d—1/d.

Question: Do optimal self-adjoint quantum expanders exist?
First attempts at exhibiting explicit constructions (inspired by classical ones): not optimal.
— What about random constructions?

Question: How to sample a unital quantum channel randomly?

YL KK =1

Ly KK =1

d: X Z;’:1 KiXK;* is a random Kraus rank (at most) d unital quantum channel on M,(C).

Idea: Pick Ki,...,Kg € Mp(C) at random, under the constraints {
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Constructions of optimal self-adjoint quantum expanders

Fact: For any self-adjoint Kraus rank d unital quantum channel ®, A(®) > 2v/d —1/d — 0,(1).
— & is an optimal self-adjoint expander if A(®) < 2v/d—1/d.

Question: Do optimal self-adjoint quantum expanders exist?
First attempts at exhibiting explicit constructions (inspired by classical ones): not optimal.
— What about random constructions?

Question: How to sample a unital quantum channel randomly?

YL KK =1

Ly KK =1

d: X Z;’:1 KiXK;* is a random Kraus rank (at most) d unital quantum channel on M,(C).

Idea: Pick Ki,...,Kg € Mp(C) at random, under the constraints {

Theorem [Paired Haar unitaries as Kraus operators (Hastings)]
Fix d € N even. Pick Us,...,Uy)» € Mn(C) independent Haar unitaries. Let K; = %, 1<i< g.
The self-adjoint unital quantum channel ® associated to the Kj’s, K*’s satisfies:

Veso, P(X(cb)g L‘;_Hs) —1—0n(1).
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Constructions of optimal self-adjoint quantum expanders

Fact: For any self-adjoint Kraus rank d unital quantum channel ®, A(®) > 2v/d —1/d — 0,(1).
— & is an optimal self-adjoint expander if A(®) < 2v/d—1/d.

Question: Do optimal self-adjoint quantum expanders exist?
First attempts at exhibiting explicit constructions (inspired by classical ones): not optimal.
— What about random constructions?

Question: How to sample a unital quantum channel randomly?

YL KK =1

Ly KK =1

d: X Z;’:1 KiXK;* is a random Kraus rank (at most) d unital quantum channel on M,(C).

Idea: Pick Ki,...,Kg € Mp(C) at random, under the constraints {

Theorem [Paired Haar unitaries as Kraus operators (Hastings)]
Fix d € N even. Pick Us,...,Uy)» € Mn(C) independent Haar unitaries. Let K; = %, 1<i< g.
The self-adjoint unital quantum channel ® associated to the Kj’s, K*’s satisfies:

Veso, P(X(cb)g L‘;_Hs) —1—0n(1).

Question: Can this result be extended to non-self-adjoint random models? to a wider variety of
them? to a regime where d is not fixed but grows with n?
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Constructions of optimal non-self-adjoint quantum expanders

Fact: For any Kraus rank d unital quantum channel ®, A(®) > 1/v/d — 0,(1).

Theorem [Haar unitaries as Kraus operators (Pisier, Timhadielt)]

Pick Uy, ..., Uq € Mp(C) independent Haar unitaries. Let K; = %, 1<i<d.
The unital quantum channel ¢ associated to the Kj’s satisfies:

1 epl/i2
Ve>0,P(MP) —=(1+¢g) ) =>1—e &7,
(o< J01+0)
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Constructions of optimal non-self-adjoint quantum expanders

Fact: For any Kraus rank d unital quantum channel ®, A(®) > 1/v/d — on(1).

Theorem [Haar unitaries as Kraus operators (Pisier, Timhadjelt)]

Pick Uy, ..., Uq € Mp(C) independent Haar unitaries. Let K; = f’ 1<i<ad.
The unital quantum channel ¢ associated to the Kj’s satisfies:

1 epl/i2
Ves0,P(Md)< ——(1+¢€) ) >1—e "™
(() 73 )>

Question: Does this remain true for ‘less random’ unitary Kraus operators?

A probability measure pon U(n) is a k-design if Ey, [UZK(-) U*®K] = Eyey, [UPK(-) U*®K].
Haar measure on U(n)

Theorem [2-design unitaries as Kraus operators (Lancien)]

Pick Uy, ..., Uq € Mp(C) independent 2-design unitaries. Let K; = \F’ <i<d.

If d > (log n)8+5, the unital quantum channel ® associated to the Kj’s satisfies:

S ) B

Interest: Nearly optimal quantum expander from random Kraus operators which are sampled
according to a simple measure on the unitary group (uniform measure on explicit finite subset).
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More random examples of optimal quantum expanders
Need: Extend the notion of expander to non-unital quantum channels (or else, too constraining).

Theorem [Gaussians as Kraus operators (Lancien/Pérez-Garcia)]

Pick G, ..., Gy € M,(C) independent Gaussians. Let K; = %, Ki=kx121<i<d.

i.i.d. Gaussian entries (mean 0, variance 1/n) =YL, kK
The quantum channel ¢ associated to the K;'s satisfies: P (7»(¢) < %) >1—e .
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More random examples of optimal quantum expanders
Need: Extend the notion of expander to non-unital quantum channels (or else, too constraining).

Theorem [Gaussians as Kraus operators (Lancien/Pérez-Garcia)]

Pick G, ..., Gy € M,(C) independent Gaussians. Let K; = %, Ki=kx121<i<d.
i.i.d. Gaussian entries (mean 0, variance 1/n) d =YL, kK
The quantum channel ¢ associated to the K;'s satisfies: P (7»(43) < %) >1—e .

Question: Does this remain true for ‘less random’ Kraus operators with independent entries?

Theorem [Sparse random matrices as Kraus operators (Lancien/Youssef)]
> eg adjacency matrix of d-biregular graph G on n vertices s.t. A(G) < C/v/d

Fix A € M,(R) a bistochastic matrix s.t. [A2(A)| < %. Let W € M,(C) be a random matrix with

independent centered entries s.t. V 1 < k,/ < n, E|W[2 = Ay, (E|Wx|P)'/P < C'pPAg, peN.
[ B=0: bounded, B = 1/2: sub-Gaussian, § = 1: sub-exponential |

Pick Wy, ..., Wy € M;(C) independent copies of W. Let K; = % Ki=Kx 12 1<i<d.

Ifd > (Iogn)s, the quantum channel ® associated to the Kj’s satisfies: P (X(CD) < %) >1— 1n

Interest: Nearly optimal quantum expanders from random Kraus operators which are sparse and
whose non-zero entries have any distribution following the moments’ growth assumption.

Quantum expanders — Random constructions & Applications LMB Functional Analysis Seminar — October 7 2025 10



Proof idea to show that EA(®) < C/v/d

fixed state of ® <
Goal: Upper bound E|A2(®)| = E|A¢ (P — M+ )], where My, : X € M,(C) = Tr(X)ps € My(C).
First step: Upper bound E|A1(® — E(®))| (and then show that E(®) is close to Mp+).
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Proof idea to show that EA(®) < C/v/d

fixed state of ® <
Goal: Upper bound E|A2(®)| = E|A¢ (P — M+ )], where My, : X € M,(C) = Tr(X)ps € My(C).
First step: Upper bound E|A1(® — E(®))| (and then show that E(®) is close to Mp+).

Observations:

o M (V)] < s1(V) = [[V]|os.

o |V]jw = ||My ||, where for W : X Y4 KiXLE, My =Y, K@ L.

[ Identification W : M,(C) — Mp(C) = My : C"®C" — C" ® C" preserves the operator norm. |

— Upper bound E|| Mg — E(Mg) ||, where My = Y9, Ki @ K; with the K;’s random.
~—————

=X
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Proof idea to show that EA(®) < C/v/d

fixed state of ® <
Goal: Upper bound E|A2(®)| = E|A¢ (P — M+ )], where My, : X € M,(C) = Tr(X)ps € My(C).
First step: Upper bound E|A1(® — E(®))| (and then show that E(®) is close to Mp+).

Observations:

o M (V)] < 51(¥) = V] )

o |V]jw = ||My ||, where for W : X Y4 KiXLE, My =Y, K@ L.

[ Identification W : M,(C) — Mp(C) = My : C"®C" — C" ® C" preserves the operator norm. |

— Upper bound E|| Mg — E(Mg) ||, where My = Y9, Ki @ K; with the K;’s random.
\T/

Implementation:
Haar unitaries, Gaussian matrices

e For concrete models, this can be done by a moments’ method:

By Jensen’s inequality, we have: V p € N, E|| X[l <E||X]|p < (ETr\X|p)1/p.

— Estimate the r.h.s. by Weingarten or Wick calculus and choose p = pp, ¢ that minimizes it.
2-design unitaries, arbitrary sparse random matrices

e For more general models, we use recent operator norm estimates for sums of random matrices

with dependencies and non-homogeneity (Brailovskaya/van Handel):

Setting X = Y9, Z, with Z := Ki @ K; — E(Ki ® K;), 1 < i < d, we have:

oy 1/2 v 1/2 1/2 1/2
(X < [IEQOC)1/® + [E(XX)|14* + C(log n)® ([Cov(X) 1% + (E max |1 Zi2 ) ).

— Estimate all parameters appearing on the r.h.s.
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e Applications and perspectives
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Implications for typical decay of correlations in many-body quantum systems

Matrix product states (MPS) form a subset of many-body quantum states.

They are particularly useful because:
@ They admit an efficient description: number of parameters that scales linearly rather than
exponentially with the number of subsytems.
@ They are good approximations of several ‘physically relevant’ states, such as ground states
of gapped local Hamiltonians on 1D systems (Hastings, Landau/Vazirani/Vidick).
L L composed of terms which act non-trivially only on nearby sites
spectral gap lower bounded by a constant independent of the number of subsystems
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Implications for typical decay of correlations in many-body quantum systems

Matrix product states (MPS) form a subset of many-body quantum states.

They are particularly useful because:
@ They admit an efficient description: number of parameters that scales linearly rather than
exponentially with the number of subsytems.
@ They are good approximations of several ‘physically relevant’ states, such as ground states
of gapped local Hamiltonians on 1D systems (Hastings, Landau/Vazirani/Vidick).
L L composed of terms which act non-trivially only on nearby sites
spectral gap lower bounded by a constant independent of the number of subsystems

with the distance separating the sites
between observables measured on distinct sites

Fact: Random (translation-invariant) MPS typically have correlations that decay exponentially
fast, with a small correlation length (Lancien/Pérez-Garcia).

Proof strategy: Observe that the correlation length is upper bounded by 1/|log A(®)| for ® a
random quantum channel associated to the random MPS (its so-called transfer operator).
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Some perspectives

@ What about explicit constructions of optimal quantum expanders?
Important for applications (cryptography, error correction, condensed matter physics, etc).

Seminal constructions required a large amount of randomness.
First step towards derandomization: Kraus operators sampled from an explicit finite subset
of unitaries or as sparse matrices with independent =1 entries.
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Some perspectives

@ What about explicit constructions of optimal quantum expanders?
Important for applications (cryptography, error correction, condensed matter physics, etc).

Seminal constructions required a large amount of randomness.
First step towards derandomization: Kraus operators sampled from an explicit finite subset
of unitaries or as sparse matrices with independent =1 entries.

@ What about identifying the full spectral distribution of random quantum channels?
p fixed state of &, My, : X — Tr(X)p. -
Given a random Kraus rank d quantum channel ® on 2,(C), the eigenvalues of ® — I,
are typically inside a segment of half-length 21/d — 1/d or a disc of radius 1/ﬂ for large n.
L self-adjoint case L. non-self-adjoint case
But how are they distributed inside it?
Full answer in the self-adjoint case (Lancien/Oliveira Santos/Youssef).
Partial conjectures in the non-self-adjoint case (Bruzda/Cappellini/Sommers/Zyczkowski).
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@ What about explicit constructions of optimal quantum expanders?
Important for applications (cryptography, error correction, condensed matter physics, etc).

Seminal constructions required a large amount of randomness.
First step towards derandomization: Kraus operators sampled from an explicit finite subset
of unitaries or as sparse matrices with independent =1 entries.

@ What about identifying the full spectral distribution of random quantum channels?
p fixed state of &, My, : X — Tr(X)p. -
Given a random Kraus rank d quantum channel ® on 2,(C), the eigenvalues of ® — I,
are typically inside a segment of half-length 21/d — 1/d or a disc of radius 1/ﬂ for large n.
L self-adjoint case L. non-self-adjoint case
But how are they distributed inside it?
Full answer in the self-adjoint case (Lancien/Oliveira Santos/Youssef).
Partial conjectures in the non-self-adjoint case (Bruzda/Cappellini/Sommers/Zyczkowski).

@ Do the results about the typical spectral gap of random quantum channels remain true when
we impose extra symmetries on the model?
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Some perspectives

@ What about explicit constructions of optimal quantum expanders?
Important for applications (cryptography, error correction, condensed matter physics, etc).

Seminal constructions required a large amount of randomness.
First step towards derandomization: Kraus operators sampled from an explicit finite subset
of unitaries or as sparse matrices with independent =1 entries.

@ What about identifying the full spectral distribution of random quantum channels?
p fixed state of &, My, : X — Tr(X)p. -
Given a random Kraus rank d quantum channel ® on 2,(C), the eigenvalues of ® — I,
are typically inside a segment of half-length 21/d — 1/d or a disc of radius 1/ﬂ for large n.
L self-adjoint case L. non-self-adjoint case
But how are they distributed inside it?
Full answer in the self-adjoint case (Lancien/Oliveira Santos/Youssef).
Partial conjectures in the non-self-adjoint case (Bruzda/Cappellini/Sommers/Zyczkowski).

@ Do the results about the typical spectral gap of random quantum channels remain true when
we impose extra symmetries on the model?

@ What about looking at other, related, notions of expansions, such as geometric ones
(Bannink/Briét/Labib/Maassen) or linear-algebraic ones (Li/Qiao/Wigderson/Wigderson/Zhang)?
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