Distinguishability norms on high-dimensional quantum systems Approximating POVMs & Locally restricted POVMs on multipartite systems

Guillaume Aubrun^{*a*}, Cécilia Lancien^{*a,b*}

a) Université Claude Bernard Lyon 1, b) Universitat Autònoma de Barcelona This research was supported by the ANR project OSQPI.

17th QIP, Barcelona, February 3-7 2014

Distinguishability norms and quantum state discrimination

System that can be in 2 quantum states, ρ or σ , with equal prior probabilities. Task: Decide in which one it is most likely, based on the accessible experimental data, i.e. on the outcomes of a POVM $M = (M_i)_{i \in I}$ performed on it. **Optimal probability of error:** $P_e = \frac{1}{2} \left(1 - \sum_{i \in I} \left| \operatorname{Tr} \left(\left[\frac{1}{2} \rho - \frac{1}{2} \sigma \right] M_i \right) \right| \right) := \frac{1}{2} \left(1 - \left\| \frac{1}{2} \rho - \frac{1}{2} \sigma \right\|_{\mathrm{M}} \right).$

 \rightarrow "Distinguishability norm" $\left\| \frac{1}{2}\rho - \frac{1}{2}\sigma \right\|_{M}$ = Bias of the POVM M on the state pair (ρ, σ) [14].

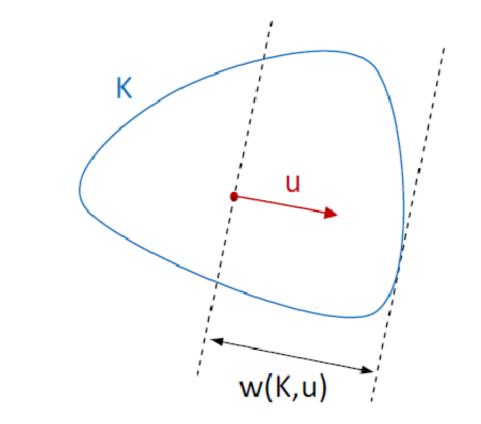
Distinguishability norms and convex geometry

"Typical" performance of PPT and separable measurements in distinguishing two bipartite states

Definition 4.1. Let M be a set of POVMs on C^d . The associated distinguishability (semi-)norm is

$$\|\cdot\|_{\mathbf{M}} := \sup_{M \in \mathbf{M}} \|\cdot\|_{M},$$

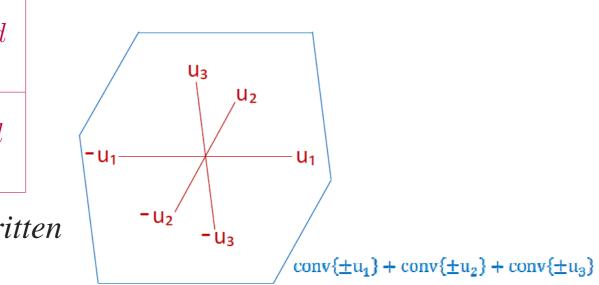
and the associated convex body is



Definition 2.1. *POVM* $M = (M_i)_{i \in I}$ on \mathbb{C}^d (*I* discrete or not): $\forall i \in I, M_i \in \mathcal{H}_+(\mathbb{C}^d)$ and $\sum_{i \in I} M_i = \mathrm{Id}$. Associated distinguishability (semi-)norm: $\forall \Delta \in \mathcal{H}(\mathbf{C}^d), \|\Delta\|_{\mathbf{M}} := \sum_{i=1}^{d} |\operatorname{Tr}(\Delta M_i)|.$ Associated convex body $K_{\rm M}$: dual of the unit ball for $\|\cdot\|_{\rm M}$ (i.e. unit ball for the norm dual to $\|\cdot\|_{\rm M}$). Problem: What "kinds" of convex bodies are associated to POVMs?

Theorem 2.2. *Equivalence between*

 K_{M} zonotope in $\mathcal{H}(\mathbf{C}^d)$ s.t. $\pm \mathrm{Id} \in K_{\mathrm{M}} \mid_{\mathrm{M}}$ discrete POVM on \mathbf{C}^d and $K_{\mathrm{M}} \subset [-\mathrm{Id}, \mathrm{Id}]$ K_{M} zonoid in $\mathcal{H}(\mathbf{C}^{d})$ s.t. $\pm \mathrm{Id} \in K_{\mathrm{M}} |_{\mathrm{M}}$ general POVM on \mathbf{C}^{d} and $K_{\mathrm{M}} \subset [-\mathrm{Id}, \mathrm{Id}]$



Definition 2.3. *Zonotope: symmetric convex body which can be written* as a finite Minkowski sum of segments. Zonoid: symmetric convex body which can be approximated in Hausdorff distance by zonotopes.

Figure 1: A zonotope in \mathbb{R}^2 .

Approximating any POVM by a POVM with "few" outcomes 3

A new "dictionary" between quantum information and convex geometry

Zonotope in \mathbf{R}^n	K_{M} for a discrete POVM M on \mathbf{C}^d	discriminatin \rightarrow Data-hidin
Zonoid in \mathbf{R}^n	K_{M} for a general POVM M on \mathbf{C}^d	Main steps
"Most symmetric" zonoid in \mathbb{R}^n = Euclidean ball B_2^n	"Most symmetric" POVM on $\mathbf{C}^d =$ Uniform POVM U Dimension-independent equivalence between the distinguishability norm $\ \Delta\ _U = d \int_{ \psi\rangle \in S_2(\mathbf{C}^d)} \langle \psi \Delta \psi \rangle d\psi$ and the Euclidean norm $\ \Delta\ _{2(1)} := \sqrt{\operatorname{Tr}(\Delta^2) + (\operatorname{Tr} \Delta)^2}$ [13]: $\frac{1}{\sqrt{18}} \ \cdot\ _{2(1)} \leq \ \cdot\ _U \leq \ \cdot\ _{2(1)}.$	• Estimate or $K_{PPT} = [-$ [16, 15, 2] w • ρ, σ independent * Estimate functions on <u>Application</u> $\rho = \frac{P_E}{d^2/2}$ and
Rudin (1967) [17]: Explicit construction of a zonotope Z in \mathbb{R}^n which is the sum of $O(n^2)$ segments and s.t. $\frac{1}{C}Z \subset B_2^n \subset CZ.$	POVM which has $\Omega(d^4)$ and $\Omega(d^8)$ outcomes [1]	$\rightarrow \text{Examples}$ not data-hidin data-hiding). $Open quest$ • Typical beh • Generalization of the second sec
Figiel-Lindenstrauss-Milman (1977) [8]: A zonotope Z in \mathbf{R}^n which is the sum of $O_{\varepsilon}(n)$		But what abo subsystems)?
independent uniformly distributed	$(\mathbf{I} - \varepsilon) \ \cdot \ \mathbf{U} \leq \ \cdot \ \mathbf{M} \leq (\mathbf{I} + \varepsilon) \ \cdot \ \mathbf{U} \cdot$	Keler
random segments satisfies with high probability $(1-\varepsilon)Z \subset B_2^n \subset (1+\varepsilon)Z.$	 Remark 3.2. Optimal dimensional order of magnitude: a POVM on C^d must have at least d² outcomes to be informationally complete. Main steps in the proof: Bernstein-type large deviation inequality for a sum of i.i.d centered ψ₁ r.v. (i.e. with sub-exponential tail) → Individual error term. Net argument → Global error term. 	[1] A. Ar [2] G. Au qudits [3] J. Bou [4] F.G.S [5] E. Ch
Talagrand (1990) [18, 3]: Given any zonoid Y in \mathbb{R}^n , there exists a zonotope Z in \mathbb{R}^n which is the sum of $O_{\varepsilon}(n \log n)$ segments and s.t. $Z \subset Y \subset (1 + \varepsilon)Z$.	Theorem 3.3. Given any POVM N on \mathbb{C}^d , there exists a sub-POVM M	[5] E. Ch bility [6] D.P. I [7] T. Eg [8] T. Fig bodie [9] A.W.

$$K_{\mathbf{M}} = \operatorname{conv}\left(\bigcup_{M \in \mathbf{M}} K_{M}\right).$$

Mean-width of $K_{\mathbf{M}}$: $w(K_{\mathbf{M}}) := \int_{S_{HS}(\mathbf{C}^{d})} \|\Delta\|_{\mathbf{M}} d\sigma(\Delta).$

Figure 2: Mean-width of a convex body K in \mathbb{R}^n :

$$w(K) = \int_{u \in S_2^{n-1}} w(K, u) \mathrm{d}u.$$

Problem: Seminal observation in quantum state discrimination [11, 12]: $\|\cdot\|_{ALL} = \|\cdot\|_1$. But on a multipartite system, there are locality constraints on the set M of POVMs that experimenters are able to implement: $LOCC \subset SEP \subset PPT$.

 \rightarrow How do these restrictions affect their distinguishing power? $\|\cdot\|_{\mathbf{M}} \simeq \|\cdot\|_{1}$ or $\|\cdot\|_{\mathbf{M}} \ll \|\cdot\|_{1}$?

Motivation: Existence of data-hiding states on multipartite systems [6, 7] i.e. states that would be well distinguished by a suitable global measurement but that are barely distinguishable by any local measurement. **Ex:** Completely symmetric and antisymmetric states on $\mathbf{C}^d \otimes \mathbf{C}^d$, $\sigma = \frac{1}{d^2+d}(\mathrm{Id} + \mathrm{F})$ and $\alpha = \frac{1}{d^2-d}(\mathrm{Id} - \mathrm{F})$. $\Delta = \sigma - \alpha \text{ is s.t. } \|\Delta\|_{\text{LOCC}} \leq \|\Delta\|_{\text{SEP}} = \|\Delta\|_{\text{PPT}} = \frac{4}{d+1} \ll 2 = \|\Delta\|_1.$

Theorem 4.2. There exist $c_0, c, C > 0$ s.t. for ρ, σ random states on $\mathbf{C}^d \otimes \mathbf{C}^d$ (picked independently and uniformly), with probability greater than $1 - e^{-c_0 d^2}$,

$$c \leq \|\rho - \sigma\|_{\mathbf{PPT}} \leq C \text{ and } \frac{c}{\sqrt{d}} \leq \|\rho - \sigma\|_{\mathbf{SEP}} \leq \frac{C}{\sqrt{d}}.$$

In comparison, $\|\rho - \sigma\|_{ALL} = \|\rho - \sigma\|_1$ is typically of order 1. So the PPT constraint only affects observers' ng ability by a constant factor, whereas the separability one implies a dimensional loss. ing is "generic" [10].

os in the proof:

on the mean-width of the convex bodies associated to **PPT** and **SEP** on $\mathbf{C}^d \otimes \mathbf{C}^d$: $-\mathrm{Id},\mathrm{Id}] \cap [-\mathrm{Id},\mathrm{Id}]^{\Gamma}$ and $K_{\mathbf{SEP}} = \{2\mathbf{R}^{+}\mathcal{S} - \mathrm{Id}\} \cap -\{2\mathbf{R}^{+}\mathcal{S} - \mathrm{Id}\}, \text{ so by "volumic" arguments}$ $w(K_{\mathbf{PPT}}) \simeq d \text{ and } w(K_{\mathbf{SEP}}) \simeq \sqrt{d}.$ bendent uniformly distributed states on $\mathbf{C}^d \otimes \mathbf{C}^d$:

te on the expected value E of $\|\rho - \sigma\|_{\mathbf{M}}$: by comparing random-matrix ensembles $\mathbf{E} \simeq \frac{w(K_{\mathbf{M}})}{d}$. te on the probability that $\|\rho - \sigma\|_{\mathbf{M}}$ deviates from E: by concentration of measure for lipschitz a sphere $\mathbf{P}(|\|\rho - \sigma\|_{\mathbf{M}} - \mathbf{E}| > t) \leq e^{-cd^2t^2}$.

ons to quantum data-hiding: Let E be a random $d^2/2$ -dimensional subspace of $\mathbf{C}^d \otimes \mathbf{C}^d$.

$$\rho = \frac{P_E}{d^2/2} \text{ and } \sigma = \frac{P_{E^{\perp}}}{d^2/2} \text{ are s.t. } \|\rho - \sigma\|_{\mathbf{ALL}} = 2, \text{ and with high probability } \begin{cases} \|\rho - \sigma\|_{\mathbf{PPT}} \simeq 1\\ \|\rho - \sigma\|_{\mathbf{SEP}} \simeq 1/\sqrt{d} \end{cases} .$$

es of orthogonal states that are with high probability data-hiding for separable measurements but ling for PPT measurements (in contrast with Werner states which are equally separable and PPT

stions:

ehaviour of $\|\cdot\|_{LOCC}$? Of the same order as $\|\cdot\|_{SEP}$ or much smaller? [5]

zation to the multipartite case $(\mathbf{C}^d)^{\otimes k}$:

and $d \to +\infty$ ("small" number of "large" subsystems), then $\|\rho - \sigma\|_{\rm PPT}$ is of order 1, as L, whereas $\|\rho - \sigma\|_{SEP}$ is of order $1/\sqrt{d^{k-1}}$ (same techniques as in the bipartite case). bout the opposite high-dimensional setting, i.e. $k \to +\infty$ and d fixed ("large" number of "small"

cences

Multiple Series and S

- Aubrun, S.J. Szarek, "Tensor product of convex sets and the volume of separable states on N ts".
- ourgain, J. Lindenstrauss, V. Milman, "Approximation of zonoids by zonotopes".
- .S.L. Brandão, M. Christandl, J.T. Yard, "Faithful Squashed Entanglement".
- Chitambar, M-H. Hsieh, "Asymptotic state discrimination and a strict hierarchy in distinguishay norms";

Remark 3.4. The case of the local uniform POVM $LU = U_1 \otimes \cdots \otimes U_k$ on $C^{d_1} \otimes \cdots \otimes C^{d_k} \equiv C^d$: *Dimension-independent equivalence between* $\|\cdot\|_{LU}$ *and a Euclidean norm* (*k*-partite analog of $\|\cdot\|_{2(1)}$) [13]. \rightarrow Existence of a separable rank-1 sub-POVM M with $O_{\varepsilon}(d^2)$ outcomes s.t. $(1-\varepsilon) \|\cdot\|_{LU} \leq \|\cdot\|_{M} \leq \|\cdot\|_{LU}$.

Applications: "Good" distinguishing power of U and $LU \Rightarrow$ Bounds on the dimensionality reduction of quantum states [9], quasi-polynomial time algorithm to solve the WMP for separability [4] etc. → Importance of being able to exhibit "implementable" POVMs already achieving near-to-optimal discrimination efficiency.

Open questions:

• Approximation of any POVM on \mathbb{C}^d by a POVM, instead of a sub-POVM, with $\Theta(d^2)$, instead of $\Theta(d^2 \log d)$, outcomes?

• Explicit construction of such POVM? (derandomization: expander codes, pseudorandom generators etc.)

DiVincenzo, D. Leung, B.M. Terhal, "Quantum Data Hiding".

ggeling, R.F. Werner, "Hiding classical data in multi-partite quantum states".

igiel, J. Lindenstrauss, V.D. Milman, "The dimension of almost spherical sections of convex .es".

. Harrow, A. Montanaro, A.J. Short, "Limitations on quantum dimensionality reduction".

[10] P. Hayden, D. Leung, P. Shor, A. Winter, "Randomizing quantum states: Constructions and applications".

[11] C.W. Helstrom, *Quantum detection and estimation theory*.

[12] A.S. Holevo, "Statistical decision theory for quantum systems".

[13] C. Lancien, A. Winter, "Distinguishing multi-partite states by local measurements".

[14] W. Matthews, S. Wehner, A. Winter, "Distinguishability of quantum states under restricted families of measurements with an application to data hiding".

[15] V.D. Milman, A. Pajor, "Entropy and asymptotic geometry of non-symmetric convex bodies".

[16] **G. Pisier**, *The Volume of Convex Bodies and Banach Spaces Geometry*.

[17] W. Rudin, Trigonometric series with gaps.

[18] **M. Talagrand**, "Embedding subspaces of L_1 into ℓ_1^N ".