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1 Distinguishability norms and quantum state discrimination

System that can be in 2 quantum states, p or o, with equal prior probabilities.

Task: Decide in which one it i1s most likely, based on the accessible experimental data, 1.e. on the outcomes
of a POVM M = (M;);<s performed on it.
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— “Distinguishability norm”™ lp — 1o|| = Bias of the POVM M on the state pair (p, o) [14].
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2 Distinguishability norms and convex geometry

Definition 2.1. POVM M = (M;),;c; on C% (I discrete or not): ¥ i € I, M; € H(C% and S M; = 1d.
el
Associated distinguishability (semi-)norm: ¥ A &€ H(Cd), 1A\ = Z‘ Tr (AM;) ’
el
Associated convex body K\ : dual of the unit ball for || - ||\ (i.e. unit ball for the norm dual to || - ||yp)-

Problem: What “kinds” of convex bodies are associated to POVMs?
Theorem 2.2. Equivalence between

K\ zonotope in H(C) s.t. £1d € Ky . d
and Ky C [—1d, 1d] M discrete POVM on C .

U2
K\ zonoid in H(C?) s.t. +1d € Ky d \/
M POVM _
and Ky; C |—1d, Id] general POVM on © 3 /\ 3
Definition 2.3. Zonotope: symmetric convex body which can be written R /
as a finite Minkowski sum of segments. conv{tuy } -+ conv{tug} + conv{tus}

Zonoid: symmetric convex body which can be approximated in Haus-
. . o . 2
dorff distance by zonotopes. Figure 1: A zonotope in R”.

3 Approximating any POVM by a POVM with *“few” outcomes

A new “dictionary”’ between quantum information and convex geometry

Zonotope in R" Ky for a discrete POVM M on Cd

Zonoid in R" Ky for a general POVM M on Cd

“Most symmetric” POVM on C% = Uniform POVM U
Dimension-independent equivalence between the distinguishability norm

Hmm—d/‘ (WIAIB)|dy
1) €55(C)

“Most symmetric” zonoid in R"
= Euclidean ball BY

and the Euclidean norm [|Aflyy) := \/Tr(AQ) + (Tr A)2 [13]:

1
\/—I_SH oy < M- Hlu < - g

Rud“,l (19?7) [17): EXPIZICI,t C;{Z A 4-design POVM on C%is already a “good” discretization of the uniform
struction ol a zonotope 2 1n POVM, which has Q(d*) and O(d®) outcomes [1].

C g 9
ngchtls the sum of O(n”) segments Explicit construction of an approximate 4-design POVM M on C?s.t.
and s.t.

1
SZCBycoz =l llo < I v < €1l Do

Theorem 3.1.A POVM M made of O-(d?) independent uniformly dis-
tributed rank-1 projectors (appropriately renormalized) satisfies with

Figiel-Lindenstrauss-Milman high probability

(1977) [8]: A zonotope Z in
R™ which is the sum of O:(n)
independent uniformly distributed
random segments satisfies with
high probability

A=l -llu<I-lv< @+ v

Remark 3.2. Optimal dimensional order of magnitude: a POVM on C
must have at least d* outcomes to be informationally complete.

(1—e)ZC By C(l1+e)Z Main steps in the proof:

e Bernstein-type large deviation inequality for a sum of i.1.d centered 1;
r.v. (1.e. with sub-exponential tail) — Individual error term.

e Net argument — Global error term.

Talagrand (1990) [18, 3]: Given
any zonoid Y in R™, there exists a Theorem 3.3. Given any POVM N on C there exists a sub-POVM M

zonotope Z in R™ which is the sum | With Oc(d*log d) outcomes s.t.
of Oc(nlogn) segments and s.t.
L=l -lIn< -l < In

ZCY C(l+¢e)Z

Remark 3.4. The case of the local uniform POVM LU =U; ® --- ® Uy on Chg...@Ch=Cd
Dimension-independent equivalence between || - ||y and a Euclidean norm (k-partite analog of | - ||o(1)) [13].

— Existence of a separable rank-1 sub-POVM M with O-(d?) outcomes s.t. (1 —¢)||- |luu < I v < || - IL.u-

Applications: “Good” distinguishing power of U and LU = Bounds on the dimensionality reduction of
quantum states [9], quasi-polynomial time algorithm to solve the WMP for separability [4] etc.
— Importance of being able to exhibit “implementable” POVMs already achieving near-to-optimal discrimi-
nation efficiency.

Open questions:

e Approximation of any POVM on C? by a POVM, instead of a sub-POVM, with ©(d?), instead of ©(d* log d),
outcomes?
e Explicit construction of such POVM? (derandomization: expander codes, pseudorandom generators etc.)
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4 “Typical” performance of PPT and separable measurements in dis-
tinguishing two bipartite states

Definition 4.1. Let M be a set of POVMs on c?
The associated distinguishability (semi-)norm is

I llnve = sup |- [Ims
MeM

and the associated convex body is
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w(K,u
Ky = conv U Ky |- (K,u)
MeM Figure 2: Mean-width of a convex body K in R":
w(K) :/ w( K, u)du.
Mean-width of Kpg: w(Kpg) := / | Al ppdo (A). uesy ™!
SH5<Cd>
Problem: Seminal observation in quantum state discrimination [11, 12]: || - [[ar, = || - |1

But on a multipartite system, there are locality constraints on the set M of POVMs that experimenters are able
to implement: LOCC C SEP C PPT.
— How do these restrictions affect their distinguishing power? || - [[ag 2= || - |1 or || - ||l << | - [|1?

Motivation: Existence of data-hiding states on multipartite systems [6, 7] 1.e. states that would be well

distinguished by a suitable global measurement but that are barely distinguishable by any local measurement.
1

Ex: Completely symmetric and antisymmetric states on C% @ C%, o = dQ—JFd(Id +F)and a = ﬁ(ld — F).

. 4
A=o—aisst [Allyoce < 1Alsep = [AllppT = 7—— <2 =[IA]}.

Theorem 4.2. There exist co,c,C' > 0 s.t. for p,o random states on Cé g Cd (picked independently and

uniformly), with probability greater than 1 — e_COdz,

C C
c< |[p—ollppr <C and —= < ||p—ollsgp < —=.

Vd Vd

In comparison, ||p — || AL, = ||p— o||1 is typically of order 1. So the PPT constraint only affects observers’
discriminating ability by a constant factor, whereas the separability one implies a dimensional loss.
— Data-hiding 1s “generic” [10].

Main steps in the proof:

e Estimate on the mean-width of the convex bodies associated to PPT and SEP on C% ® C¢:

Kppr = [-1d,1d] N [-Id,Id]" and Kggp = {2RTS — Id} N —{2R*S — 1d}, so by “volumic” arguments
[16, 15, 2] w(KppT) ~ d and w(Kggp) ~ Vd.

e p, 0 independent uniformly distributed states on Clg

= Estimate on the expected value E of ||p — o||pp: by comparing random-matrix ensembles E ~ M%M)

x Estimate on the probability that |p — o||pf deviates from E: by concentration of measure for lipschitz

functions on a sphere P(|||p — o|lpg — E| > ¢) < e—cd't’,

Applications to quantum data-hiding: Let E be a random d”/2-dimensional subspace of Cc? g Cd.

lp—ollppT ~1

Ip—ollsgp ~ 1/vd

— Examples of orthogonal states that are with high probability data-hiding for separable measurements but
not data-hiding for PPT measurements (in contrast with Werner states which are equally separable and PPT
data-hiding).

p = d];—72 and 0 = 52—% are s.t. ||p — o|| AL, = 2, and with high probability

Open questions:
e Typical behaviour of || - ||,occ? Of the same order as || - ||ggp or much smaller? [5]
e Generalization to the multipartite case (C%)®":
If £ is fixed and d — +oo (“small” number of “large” subsystems), then ||p — o||ppT is of order 1, as
|p — o|| AL, Whereas ||p — o||ggp is of order 1/v'd*—! (same techniques as in the bipartite case).
But what about the opposite high-dimensional setting, i.e. £ — 400 and d fixed (“large” number of “small”
subsystems)?
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