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1 Distinguishability norms and quantum state discrimination
System that can be in 2 quantum states, ρ or σ, with equal prior probabilities.

Task: Decide in which one it is most likely, based on the accessible experimental data, i.e. on the outcomes
of a POVM M = (Mi)i∈I performed on it.
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→ “Distinguishability norm”
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= Bias of the POVM M on the state pair (ρ, σ) [14].

2 Distinguishability norms and convex geometry
Definition 2.1. POVM M = (Mi)i∈I on Cd (I discrete or not): ∀ i ∈ I, Mi ∈ H+(Cd) and

∑
i∈I
Mi = Id.

Associated distinguishability (semi-)norm: ∀ ∆ ∈ H(Cd), ‖∆‖M :=
∑
i∈I

∣∣Tr
(
∆Mi

)∣∣.
Associated convex body KM: dual of the unit ball for ‖ · ‖M (i.e. unit ball for the norm dual to ‖ · ‖M).

Problem: What “kinds” of convex bodies are associated to POVMs?
Theorem 2.2. Equivalence between

KM zonotope in H(Cd) s.t. ±Id ∈ KM
and KM ⊂ [−Id, Id]

M discrete POVM on Cd

KM zonoid in H(Cd) s.t. ±Id ∈ KM
and KM ⊂ [−Id, Id]

M general POVM on Cd

Definition 2.3. Zonotope: symmetric convex body which can be written
as a finite Minkowski sum of segments.
Zonoid: symmetric convex body which can be approximated in Haus-
dorff distance by zonotopes. Figure 1: A zonotope in R2.

3 Approximating any POVM by a POVM with “few” outcomes
A new “dictionary” between quantum information and convex geometry

Zonotope in Rn KM for a discrete POVM M on Cd

Zonoid in Rn KM for a general POVM M on Cd

“Most symmetric” zonoid in Rn

= Euclidean ball Bn2

“Most symmetric” POVM on Cd = Uniform POVM U
Dimension-independent equivalence between the distinguishability norm

‖∆‖U = d

∫
|ψ〉∈S2(Cd)

|〈ψ|∆|ψ〉|dψ

and the Euclidean norm ‖∆‖2(1) :=
√

Tr(∆2) + (Tr ∆)2 [13]:

1√
18
‖ · ‖2(1) 6 ‖ · ‖U 6 ‖ · ‖2(1).

Rudin (1967) [17]: Explicit con-
struction of a zonotope Z in Rn

which is the sum ofO(n2) segments
and s.t.

1

C
Z ⊂ Bn2 ⊂ CZ.

A 4-design POVM on Cd is already a “good” discretization of the uniform
POVM, which has Ω(d4) and O(d8) outcomes [1].
Explicit construction of an approximate 4-design POVM M on Cd s.t.

1

C
‖ · ‖U 6 ‖ · ‖M 6 C‖ · ‖U.

Figiel-Lindenstrauss-Milman
(1977) [8]: A zonotope Z in
Rn which is the sum of Oε(n)
independent uniformly distributed
random segments satisfies with
high probability

(1− ε)Z ⊂ Bn2 ⊂ (1 + ε)Z.

Theorem 3.1. A POVM M made of Oε(d2) independent uniformly dis-
tributed rank-1 projectors (appropriately renormalized) satisfies with
high probability

(1− ε)‖ · ‖U 6 ‖ · ‖M 6 (1 + ε)‖ · ‖U.

Remark 3.2. Optimal dimensional order of magnitude: a POVM on Cd

must have at least d2 outcomes to be informationally complete.

Main steps in the proof:
• Bernstein-type large deviation inequality for a sum of i.i.d centered ψ1
r.v. (i.e. with sub-exponential tail)→ Individual error term.
• Net argument→ Global error term.

Talagrand (1990) [18, 3]: Given
any zonoid Y in Rn, there exists a
zonotope Z in Rn which is the sum
of Oε(n log n) segments and s.t.

Z ⊂ Y ⊂ (1 + ε)Z.

Theorem 3.3. Given any POVM N on Cd, there exists a sub-POVM M
with Oε(d2 log d) outcomes s.t.

(1− ε)‖ · ‖N 6 ‖ · ‖M 6 ‖ · ‖N.

Remark 3.4. The case of the local uniform POVM LU = U1 ⊗ · · · ⊗ Uk on Cd1 ⊗ · · · ⊗Cdk ≡ Cd:
Dimension-independent equivalence between ‖ ·‖LU and a Euclidean norm (k-partite analog of ‖ ·‖2(1)) [13].
→ Existence of a separable rank-1 sub-POVM M with Oε(d2) outcomes s.t. (1− ε)‖ · ‖LU 6 ‖ · ‖M 6 ‖ · ‖LU.

Applications: “Good” distinguishing power of U and LU ⇒ Bounds on the dimensionality reduction of
quantum states [9], quasi-polynomial time algorithm to solve the WMP for separability [4] etc.
→ Importance of being able to exhibit “implementable” POVMs already achieving near-to-optimal discrimi-
nation efficiency.

Open questions:
•Approximation of any POVM on Cd by a POVM, instead of a sub-POVM, with Θ(d2), instead of Θ(d2 log d),
outcomes?
• Explicit construction of such POVM? (derandomization: expander codes, pseudorandom generators etc.)

4 “Typical” performance of PPT and separable measurements in dis-
tinguishing two bipartite states

Definition 4.1. Let M be a set of POVMs on Cd.
The associated distinguishability (semi-)norm is

‖ · ‖M := sup
M∈M

‖ · ‖M,

and the associated convex body is

KM = conv

 ⋃
M∈M

KM

 .

Mean-width of KM: w(KM) :=

∫
SHS(Cd)

‖∆‖Mdσ(∆).

Figure 2: Mean-width of a convex body K in Rn:

w(K) =

∫
u∈Sn−12

w(K, u)du.

Problem: Seminal observation in quantum state discrimination [11, 12]: ‖ · ‖ALL = ‖ · ‖1.
But on a multipartite system, there are locality constraints on the set M of POVMs that experimenters are able
to implement: LOCC ⊂ SEP ⊂ PPT.
→ How do these restrictions affect their distinguishing power? ‖ · ‖M ' ‖ · ‖1 or ‖ · ‖M� ‖ · ‖1?

Motivation: Existence of data-hiding states on multipartite systems [6, 7] i.e. states that would be well
distinguished by a suitable global measurement but that are barely distinguishable by any local measurement.
Ex: Completely symmetric and antisymmetric states on Cd ⊗Cd, σ = 1

d2+d
(Id + F) and α = 1

d2−d(Id− F).

∆ = σ − α is s.t. ‖∆‖LOCC 6 ‖∆‖SEP = ‖∆‖PPT =
4

d + 1
� 2 = ‖∆‖1.

Theorem 4.2. There exist c0, c, C > 0 s.t. for ρ, σ random states on Cd ⊗ Cd (picked independently and
uniformly), with probability greater than 1− e−c0d2,

c 6 ‖ρ− σ‖PPT 6 C and
c√
d
6 ‖ρ− σ‖SEP 6

C√
d
.

In comparison, ‖ρ−σ‖ALL = ‖ρ−σ‖1 is typically of order 1. So the PPT constraint only affects observers’
discriminating ability by a constant factor, whereas the separability one implies a dimensional loss.
→ Data-hiding is “generic” [10].

Main steps in the proof:
• Estimate on the mean-width of the convex bodies associated to PPT and SEP on Cd ⊗Cd:
KPPT = [−Id, Id] ∩ [−Id, Id]Γ and KSEP = {2R+S − Id} ∩ −{2R+S − Id}, so by “volumic” arguments
[16, 15, 2] w(KPPT) ' d and w(KSEP) '

√
d.

• ρ, σ independent uniformly distributed states on Cd ⊗Cd:
? Estimate on the expected value E of ‖ρ− σ‖M: by comparing random-matrix ensembles E ' w(KM)

d .
? Estimate on the probability that ‖ρ − σ‖M deviates from E: by concentration of measure for lipschitz

functions on a sphere P
(∣∣‖ρ− σ‖M − E

∣∣ > t
)
6 e−cd

2t2.

Applications to quantum data-hiding: Let E be a random d2/2-dimensional subspace of Cd ⊗Cd.

ρ = PE
d2/2

and σ =
PE⊥
d2/2

are s.t. ‖ρ− σ‖ALL = 2, and with high probability

{
‖ρ− σ‖PPT ' 1

‖ρ− σ‖SEP ' 1/
√
d

.

→ Examples of orthogonal states that are with high probability data-hiding for separable measurements but
not data-hiding for PPT measurements (in contrast with Werner states which are equally separable and PPT
data-hiding).

Open questions:
• Typical behaviour of ‖ · ‖LOCC? Of the same order as ‖ · ‖SEP or much smaller? [5]
• Generalization to the multipartite case (Cd)⊗k:
If k is fixed and d → +∞ (“small” number of “large” subsystems), then ‖ρ − σ‖PPT is of order 1, as
‖ρ− σ‖ALL, whereas ‖ρ− σ‖SEP is of order 1/

√
dk−1 (same techniques as in the bipartite case).

But what about the opposite high-dimensional setting, i.e. k → +∞ and d fixed (“large” number of “small”
subsystems)?
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