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1 Classical and quantum correlation matrices
2-player 2-outcome non-local game

A

i ∈ {1, . . . , n}

x ∈ {+,−}

B

j ∈ {1, . . . , n}

y ∈ {+,−}

w.p. Π(ij)

w.p. P (xy|ij)

A & B gain V (ijxy) =

{
+V (ij) if x = y

−V (ij) if x 6= y

Given a strategy (i.e. conditional p.d.) P for A & B, the
associated correlation τ is the n × n matrix s.t., for each
i, j ∈ {1, . . . , n},

τij = P (+ + |ij) + P (−− |ij)− P (+− |ij)− P (− + |ij)

Goal of A & B: max

{
n∑

i,j=1
Π(ij)V (ij)τij, P allowed

}
.

Allowed strategies and associated correlations
• Classical strategy: For each x, y ∈ {+,−} and i, j ∈ {1, . . . , n}, P (xy|ij) =

∑
λ qλA(x|iλ)B(y|jλ),

with {qλ}λ, {A(+|iλ), A(−|iλ)}, {B(+|jλ), B(−|jλ)} p.d.’s.
• Quantum strategy: For each x, y ∈ {+,−} and i, j ∈ {1, . . . , n}, P (xy|ij) = Tr(Axi ⊗B

y
j %),

with % state onHA ⊗HB, (A+
i , A

−
i ), (B+

j , B
−
j ) POVMs onHA,HB.

• Classical correlation: τ ∈ C :=
{(

E[XiYj]
)

16i,j6n, |Xi|, |Yj| 6 1 a.s.
}

.

• Quantum correlation: τ ∈ Q :=

{(
Tr[Xi ⊗ Yj %]

)
16i,j6n,

{
‖Xi‖∞, ‖Yj‖∞ 6 1

X∗i = Xi, Y
∗
j = Yj

, % state

}
.

Proposition 1.1 (Characterization of C & Q).

C = conv
{

(αiβj)16i,j6n, αi, βj = ±1
}

& Q = conv
{

(〈ui|vj〉)16i,j6n, ui, vj ∈ SRm

}

2 Correlation matrices and tensor norms
Definition/Proposition 2.1 (The dual norms `n1 ⊗ε `

n
1 & `n∞ ⊗π `n∞).

‖M‖`n1⊗ε`n1 := sup


n∑

i,j=1

Mijαiβj, αi, βj = ±1

 & ‖τ‖`n∞⊗π`n∞ := inf


N∑
k=1

‖xk‖∞‖yk‖∞, τ =

N∑
k=1

xk ⊗ yk


τ ∈ C ⇔ ∀M s.t. ‖M‖`n1⊗ε`n1 6 1, Tr(τM t) 6 1 ⇔ ‖τ‖`n∞⊗π`n∞ 6 1

Definition/Proposition 2.2 (The dual norms γ∗2 & γ2).

γ∗2 (M) := sup


n∑

i,j=1

Mij〈ui|vj〉, ui, vj ∈ SRm

 & γ2(τ ) := inf

{
max

16i6n
‖Ri(X)‖2 max

16j6n
‖Cj(Y )‖2, τ = XY

}
τ ∈ Q ⇔ ∀M s.t. γ∗2 (M) 6 1, Tr(τM t) 6 1 ⇔ γ2(τ ) 6 1

Known: By Grothendieck’s inequality [5], there exists 1.67 < KG < 1.79 s.t., for any n× n matrix T ,

γ2(T ) 6 ‖T‖`n∞⊗π`n∞ 6 KGγ2(T ).

→ No unbounded ratio between the “classical” and “quantum” norms of T .

Question: What typically happens for T picked at random? In particular, can the dominating constant in the
first inequality be improved from 1 to a value strictly bigger than 1?

3 Main result
Theorem 3.1. Let T be an n × n random matrix satisfying the two assumptions: (1) its distribution is bi-
orthogonally invariant, and (2) w.h.p. ‖T‖∞ 6 (r + o(1))

‖T‖1
n . Then w.h.p. as n→ +∞,

‖T‖`n∞⊗π`n∞ >

(√
16

15
− o(1)

)
γ2(T ) > γ2(T ).

Consequence: The random correlation τ = T
γ2(T )

is quantum (by construction) but w.h.p. non-classical.

Examples of applications:
• Let G be an n× n Gaussian matrix.
τ = G

γ2(G)
is uniformly distributed on the border of Q but w.h.p. not in C.

→ The borders of C and Q do not coincide in typical directions.
• Let u1, . . . , un, v1, . . . , vn be independent and uniformly distributed unit vectors in Rm.
τ = (〈ui|vj〉)16i,j6n is in Q but w.h.p. not in C if m/n < 0.13.
→ Bridging the gap between this result and the opposite one from [3], stating that τ is w.h.p. in C ifm/n > 2?

Two main technical lemmas needed:
• SVD of a bi-orthogonally invariant random matrix T [3]:
T ∼ UΣV t with U, V,Σ independent, U, V uniformly distributed orthogonal matrices, Σ diagonal positive
semidefinite matrix.
• Levy’s lemma for an L-Lipschitz function f : SRn → R with median Mf (w.r.t. the uniform measure) [2]:
∀ 0 < θ < π/2, P

(
f ≷Mf ± (cos θ)L

)
6 1

2 (sin θ)n−1 6 1
2 e
−(n−1)(cos θ)2/2.

4 Upper bounding the quantum norm of a random matrix
Proposition 4.1. Let T be an n× n random matrix satisfying (1) and (2). Then w.h.p. as n→ +∞,

γ2(T ) 6
(
1 + o(1)

)‖T‖1
n

.

Main steps in the proof:
• SVD of T : T = XY with X = U

√
Σ, Y =

√
ΣV t.

• Levy’s lemma: ∀ 1 6 i, j 6 n,

P
(
‖Ri(X)‖22 > (1 + ε) Tr Σ

n

)
6 e−cnε

2/r2

P
(
‖Cj(Y )‖22 > (1 + ε) Tr Σ

n

)
6 e−cnε

2/r2
.

So by the union bound (on 2n events):

P

(
γ2(T ) 6 (1 + ε)

Tr Σ

n

)
> P

(
∀ 1 6 i, j 6 n, ‖Ri(X)‖2‖Cj(Y )‖2 6 (1 + ε)

Tr Σ

n

)
> 1− 2n e−cnε

2/r2.

Remark: This result is optimal.
Indeed, by duality: γ2(T ) = sup

M

Tr(TM t)
γ∗2(M)

> Tr Σ
γ∗2(UV t)

, where T = UΣV t (taking M = UV t).

And for any n× n orthogonal matrix O, γ∗2 (O) = n.

5 Lower bounding the classical norm of a random matrix
Proposition 5.1. Let T be an n× n random matrix satisfying (1). Then w.h.p. as n→ +∞,

‖T‖`n∞⊗π`n∞ >

(√
16

15
− o(1)

)
‖T‖1
n

.

Main steps in the proof:

• Duality: ‖T‖`n∞⊗π`n∞ = sup
M

Tr(TM t)
‖M‖`n1⊗ε`n1

> Tr Σ
‖UV t‖`n1⊗ε`n1

, where T = UΣV t (taking M = UV t).

• Levy’s lemma: ∀ α, β ∈ {±1}n, P

(
n∑

i,j=1
(UV t)ijαiβj > (cos θ)n

)
6 1

2 (sin θ)n−1.

So by the union bound (on 4n events):

P
(
‖UV t‖`n1⊗ε`n1 6 (cos θ)n

)
= P

(
∀ α, β ∈ {±1}n,

n∑
i,j=1

(UV t)ijαiβj 6 (cos θ)n
)
> 1− 4n

1

2
(sin θ)n−1.

And 4 sin θ < 1 ⇔ cos θ >
√

15/16.

Remark: This result is potentially non-optimal for two reasons.
• Is there a better choice than M = UV t as Bell functional?
•What is the exact asymptotics of E‖O‖`n1⊗ε`n1 for O an n× n uniformly distributed orthogonal matrix?

We only know that
(√

2
π − o(1)

)
n 6 E‖O‖`n1⊗ε`n1 6

(√
15
16 + o(1)

)
n.

6 Concluding remarks and perspectives
• Given T a random matrix satisfying (1) and (2), we can exhibit a Bell functional M generically witnessing

the generic non-classicality of the quantum correlation τ = T
γ2(T )

, namely M = UV t where T = UΣV t is the
SVD of T .

• Dual problem: Given a random Bell functional M , is its quantum value (i.e. γ∗2 (M)) w.h.p. strictly bigger
than its classical value (i.e. ‖M‖`n1⊗ε`n1)?
Answer from [1]: If M is an n× n Gaussian or Bernoulli matrix, then w.h.p. as n→ +∞,

γ∗2 (M) >

(
1√
ln 2
− o(1)

)
‖M‖`n1⊗ε`n1 > ‖M‖`n1⊗ε`n1 .

•Weaker corollaries: Separations of Q∗ vs C∗ and Q vs C in terms of mean width w. Namely,

w(Q∗) < w(C∗) and w(Q) > w(C).

Definition: Given K a set of n× n matrices, w(K) := E sup
X∈K

Tr(GXt), for G an n× n Gaussian matrix.

• For much more around this topic, see [4].
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