Random quantum correlations are generically non-classical

arXiv[quant-ph]:1607.04203

Carlos González-Guillén ${ }^{a, c}$, Cécilia Lancien ${ }^{a}$, Carlos Palazuelos ${ }^{a, b}$, Ignacio Villanueva ${ }^{a}$

a) Universidad Complutense de Madrid
b) ICMAT
c) Universidad Politécnica de Madrid

U N I V E R S I D A D
COMPLUTENSE

instituto de ciencias matemáticas
POLITÉCNICA

1 Classical and quantum correlation matrices

2-player 2-outcome non-local game

$i \in\{1, \ldots, n\} \quad j \in\{1, \ldots, n\}$ w.p. $\Pi(i j)$
A
$x \in\{+,-\} \quad y \in\{+,-\}$ w.p. $P(x y \mid i j)$
A \& B gain $V(i j x y)=\left\{\begin{array}{l}+V(i j) \text { if } x=y \\ -V(i j) \text { if } x \neq y\end{array}\right.$

Given a strategy (i.e. conditional p.d.) P for A \& B, the associated correlation τ is the $n \times n$ matrix s.t., for each $i, j \in\{1, \ldots, n\}$,
$\tau_{i j}=P(++\mid i j)+P(--\mid i j)-P(+-\mid i j)-P(-+\mid i j)$
Goal of A \& B: $\max \left\{\sum_{i, j=1}^{n} \Pi(i j) V(i j) \tau_{i j}, P\right.$ allowed $\}$.

Allowed strategies and associated correlations

- Classical strategy: For each $x, y \in\{+,-\}$ and $i, j \in\{1, \ldots, n\}, P(x y \mid i j)=\sum_{\lambda} q_{\lambda} A(x \mid i \lambda) B(y \mid j \lambda)$, with $\left\{q_{\lambda}\right\}_{\lambda},\{A(+\mid i \lambda), A(-\mid i \lambda)\},\{B(+\mid j \lambda), B(-\mid j \lambda)\}$ p.d.'s.
- Quantum strategy: For each $x, y \in\{+,-\}$ and $i, j \in\{1, \ldots, n\}, P(x y \mid i j)=\operatorname{Tr}\left(A_{i}^{x} \otimes B_{j}^{y} \varrho\right)$, with ϱ state on $\mathcal{H}_{A} \otimes \mathcal{H}_{B},\left(A_{i}^{+}, A_{i}^{-}\right),\left(B_{j}^{+}, B_{j}^{-}\right)$POVMs on $\mathcal{H}_{A}, \mathcal{H}_{B}$.
- Classical correlation: $\tau \in \mathcal{C}:=\left\{\left(\mathbf{E}\left[X_{i} Y_{j}\right]\right)_{1 \leqslant i, j \leqslant n},\left|X_{i}\right|,\left|Y_{j}\right| \leqslant 1\right.$ a.s. $\}$
- Quantum correlation: $\tau \in \mathcal{Q}:=\left\{\left(\operatorname{Tr}\left[X_{i} \otimes Y_{j} \varrho\right]\right)_{1 \leqslant i, j \leqslant n},\left\{\begin{array}{l}\left\|X_{i}\right\|_{\infty},\left\|Y_{j}\right\|_{\infty} \leqslant 1 \\ X_{i}^{*}=X_{i}, Y_{j}^{*}=Y_{j}\end{array}, \varrho\right.\right.$ state $\}$.

Proposition 1.1 (Characterization of $\mathcal{C} \& \mathcal{Q}$).

$$
\mathcal{C}=\operatorname{conv}\left\{\left(\alpha_{i} \beta_{j}\right)_{1 \leqslant i, j \leqslant n}, \alpha_{i}, \beta_{j}= \pm 1\right\} \& \mathcal{Q}=\operatorname{conv}\left\{\left(\left\langle u_{i} \mid v_{j}\right\rangle\right)_{1 \leqslant i, j \leqslant n}, u_{i}, v_{j} \in S_{\mathbf{R}^{m}}\right\}
$$

2 Correlation matrices and tensor norms

Definition/Proposition 2.1 (The dual norms $\ell_{1}^{n} \otimes_{\epsilon} \ell_{1}^{n} \& \ell_{\infty}^{n} \otimes_{\pi} \ell_{\infty}^{n}$).
$\|M\|_{\ell_{1}^{n} \otimes_{\ell} \ell_{1}}:=\sup \left\{\sum_{i, j=1}^{n} M_{i j} \alpha_{i} \beta_{j}, \alpha_{i}, \beta_{j}= \pm 1\right\} \&\|\tau\|_{\ell_{\infty}^{n} \otimes_{\pi} \ell_{\infty}^{n}}:=\inf \left\{\sum_{k=1}^{N}\left\|x_{k}\right\|_{\infty}\left\|y_{k}\right\|_{\infty}, \tau=\sum_{k=1}^{N} x_{k} \otimes y_{k}\right\}$

$$
\tau \in \mathcal{C} \Leftrightarrow \forall M \text { s.t. }\|M\|_{\ell_{1}^{n} \otimes_{\epsilon} \ell_{1}^{n}} \leqslant 1, \operatorname{Tr}\left(\tau M^{t}\right) \leqslant 1 \Leftrightarrow\|\tau\|_{\ell_{\infty}^{n} \otimes_{\pi} \ell_{\infty}^{n}} \leqslant 1
$$

Definition/Proposition 2.2 (The dual norms $\gamma_{2}^{*} \& \gamma_{2}$).
$\gamma_{2}^{*}(M):=\sup \left\{\sum_{i, j=1}^{n} M_{i j}\left\langle u_{i} \mid v_{j}\right\rangle, u_{i}, v_{j} \in S_{\mathbf{R}^{m}}\right\} \& \gamma_{2}(\tau):=\inf \left\{\max _{1 \leqslant i \leqslant n}\left\|R_{i}(X)\right\|_{\left.2_{1 \leqslant j} \max _{1 \leqslant n}\left\|C_{j}(Y)\right\|_{2}, \tau=X Y\right\}}\right.$

$$
\tau \in \mathcal{Q} \Leftrightarrow \forall M \text { s.t. } \gamma_{2}^{*}(M) \leqslant 1, \operatorname{Tr}\left(\tau M^{t}\right) \leqslant 1 \Leftrightarrow \gamma_{2}(\tau) \leqslant 1
$$

Known: By Grothendieck's inequality [5], there exists $1.67<K_{G}<1.79$ s.t., for any $n \times n$ matrix T,

$$
\gamma_{2}(T) \leqslant\|T\|_{\ell_{\infty}^{n} \otimes_{\pi} \ell_{\infty}^{n}} \leqslant K_{G} \gamma_{2}(T) .
$$

\rightarrow No unbounded ratio between the "classical" and "quantum" norms of T.
Question: What typically happens for T picked at random? In particular, can the dominating constant in the first inequality be improved from 1 to a value strictly bigger than 1 ?

3 Main result

Theorem 3.1. Let T be an $n \times n$ random matrix satisfying the two assumptions: (1) its distribution is biorthogonally invariant, and (2) w.h.p. $\|T\|_{\infty} \leqslant(r+o(1)) \frac{\|T\|_{1}}{n}$. Then w.h.p. as $n \rightarrow+\infty$,

$$
\|T\|_{\ell_{\infty}^{n} \otimes_{\pi} \ell_{\infty}^{n}} \geqslant\left(\sqrt{\frac{16}{15}}-o(1)\right) \gamma_{2}(T)>\gamma_{2}(T)
$$

Consequence: The random correlation $\tau=\frac{T}{\gamma_{2}(T)}$ is quantum (by construction) but w.h.p. non-classical.

Examples of applications:

- Let G be an $n \times n$ Gaussian matrix.
$\tau=\frac{G}{\gamma_{2}(G)}$ is uniformly distributed on the border of \mathcal{Q} but w.h.p. not in \mathcal{C}
\rightarrow The borders of \mathcal{C} and \mathcal{Q} do not coincide in typical directions.
\bullet Let $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}$ be independent and uniformly distributed unit vectors in \mathbf{R}^{m}
$\tau=\left(\left\langle u_{i} \mid v_{j}\right\rangle\right)_{1 \leqslant i, j \leqslant n}$ is in \mathcal{Q} but w.h.p. not in \mathcal{C} if $m / n<0.13$.
\rightarrow Bridging the gap between this result and the opposite one from [3], stating that τ is w.h.p. in \mathcal{C} if $m / n>2$?

Two main technical lemmas needed:

- SVD of a bi-orthogonally invariant random matrix T [3]:
$T \sim U \Sigma V^{t}$ with U, V, Σ independent, U, V uniformly distributed orthogonal matrices, Σ diagonal positive semidefinite matrix
- Levy's lemma for an L-Lipschitz function $f: S_{\mathbf{R}^{n}} \rightarrow \mathbf{R}$ with median M_{f} (w.r.t. the uniform measure) [2]: $\forall 0<\theta<\pi / 2, \mathbf{P}\left(f \gtrless M_{f} \pm(\cos \theta) L\right) \leqslant \frac{1}{2}(\sin \theta)^{n-1} \leqslant \frac{1}{2} e^{-(n-1)(\cos \theta)^{2} / 2}$.

4 Upper bounding the quantum norm of a random matrix

\qquad

$$
\gamma_{2}(T) \leqslant(1+o(1)) \frac{\|T\|_{1}}{n}
$$

Main steps in the proof:

- SVD of $T: T=X Y$ with $X=U \sqrt{\Sigma}, Y=\sqrt{\Sigma} V^{t}$
- Levy's lemma: $\forall 1 \leqslant i, j \leqslant n,\left\{\begin{array}{l}\mathbf{P}\left(\left\|R_{i}(X)\right\|_{2}^{2}>(1+\epsilon) \frac{\operatorname{Tr} \Sigma}{n}\right) \leqslant e^{-c n \epsilon^{2} / r^{2}} \\ \mathbf{P}\left(\left\|C_{j}(Y)\right\|_{2}^{2}>(1+\epsilon) \frac{\operatorname{Tr} \Sigma}{n}\right) \leqslant e^{-c n \epsilon^{2} / r^{2}}\end{array}\right.$

So by the union bound (on $2 n$ events):
$\mathbf{P}\left(\gamma_{2}(T) \leqslant(1+\epsilon) \frac{\operatorname{Tr} \Sigma}{n}\right) \geqslant \mathbf{P}\left(\forall 1 \leqslant i, j \leqslant n,\left\|R_{i}(X)\right\|_{2}\left\|C_{j}(Y)\right\|_{2} \leqslant(1+\epsilon) \frac{\operatorname{Tr} \Sigma}{n}\right) \geqslant 1-2 n e^{-c n \epsilon^{2} / r^{2}}$.

Remark: This result is optimal.
Indeed, by duality: $\gamma_{2}(T)=\sup _{M} \frac{\operatorname{Tr}\left(T M^{t}\right)}{\gamma_{2}^{*}(M)} \geqslant \frac{\operatorname{Tr} \Sigma}{\gamma_{2}^{*}\left(U V^{t}\right)}$, where $T=U \Sigma V^{t}$ (taking $M=U V^{t}$). And for any $n \times n$ orthogonal matrix $O, \gamma_{2}^{*}(O)=n$.

5 Lower bounding the classical norm of a random matrix

Proposition 5.1. Let T be an $n \times n$ random matrix satisfying (1). Then w.h.p. as $n \rightarrow+\infty$,

$$
\|T\|_{\ell_{\infty}^{n} \otimes_{\pi} \tau_{\infty}^{n}} \geqslant\left(\sqrt{\frac{16}{15}}-o(1)\right) \frac{\|T\|_{1}}{n} .
$$

Main steps in the proof:

- Levy's lemma: $\forall \alpha, \beta \in\{ \pm 1\}^{n}, \mathbf{P}\left(\sum_{i, j=1}^{n}\left(U V^{t}\right)_{i j} \alpha_{i} \beta_{j}>(\cos \theta) n\right) \leqslant \frac{1}{2}(\sin \theta)^{n-1}$.

So by the union bound (on 4^{n} events):
$\mathbf{P}\left(\left\|U V^{t}\right\|_{\ell_{1}^{n} \otimes_{\ell} \ell_{1}^{n}} \leqslant(\cos \theta) n\right)=\mathbf{P}\left(\forall \alpha, \beta \in\{ \pm 1\}^{n}, \sum_{i, j=1}^{n}\left(U V^{t}\right)_{i j} \alpha_{i} \beta_{j} \leqslant(\cos \theta) n\right) \geqslant 1-4^{n} \frac{1}{2}(\sin \theta)^{n-1}$. And $4 \sin \theta<1 \Leftrightarrow \cos \theta>\sqrt{15 / 16}$.
Remark: This result is potentially non-optimal for two reasons.

- Is there a better choice than $M=U V^{t}$ as Bell functional?
- What is the exact asymptotics of $\mathbf{E}\|O\|_{\ell_{1}^{n} \otimes_{\ell} \ell_{1}^{n}}$ for O an $n \times n$ uniformly distributed orthogonal matrix?

We only know that $\left(\sqrt{\frac{2}{\pi}}-o(1)\right) n \leqslant \mathbf{E}\|O\|_{\ell_{1}^{n} \otimes_{\ell} \ell_{1}^{n}} \leqslant\left(\sqrt{\frac{15}{16}}+o(1)\right) n$.

6 Concluding remarks and perspectives

- Given T a random matrix satisfying (1) and (2), we can exhibit a Bell functional M generically witnessing the generic non-classicality of the quantum correlation $\tau=\frac{T}{\gamma^{2}(T)}$, namely $M=U V^{t}$ where $T=U \Sigma V^{t}$ is the SVD of T.
- Dual problem: Given a random Bell functional M, is its quantum value (i.e. $\gamma_{2}^{*}(M)$) w.h.p. strictly bigger than its classical value (i.e. $\|M\|_{\ell_{1}^{n} \otimes_{\ell} \ell^{n}}$)
Answer from [1]: If M is an $n \times n$ Gaussian or Bernoulli matrix, then w.h.p. as $n \rightarrow+\infty$,

$$
\gamma_{2}^{*}(M) \geqslant\left(\frac{1}{\sqrt{\ln 2}}-o(1)\right)\|M\|_{\ell_{1}^{n} \otimes_{\epsilon} \ell_{1}^{n}}>\|M\|_{\ell_{1}^{n} \otimes_{\ell} \ell_{1}^{n}}
$$

- Weaker corollaries: Separations of \mathcal{Q}^{*} vs \mathcal{C}^{*} and \mathcal{Q} vs \mathcal{C} in terms of mean width w. Namely,

$$
w\left(\mathcal{Q}^{*}\right)<w\left(\mathcal{C}^{*}\right) \text { and } w(\mathcal{Q})>w(\mathcal{C})
$$

Definition: Given \mathcal{K} a set of $n \times n$ matrices, $w(\mathcal{K}):=\mathbf{E} \sup _{X \in \mathcal{K}} \operatorname{Tr}\left(G X^{t}\right)$, for G an $n \times n$ Gaussian matrix

- For much more around this topic, see [4].

References

[1] A. Ambainis, A. Bačkurs, K. Balodis, D. Kravčenko, R. Ozols, J. Smotrovs, M. Virza, "Quantum strategies are better than classical in almost any XOR games"
[2] G. Aubrun, S.J. Szarek, Alice and Bob meet Banach.
[3] C.E. González-Guillén, C.H. Jiménez, C. Palazuelos, I. Villanueva, "Sampling quantum nonlocal correlations with high probability"
[4] C. Palazuelos, T. Vidick, "Survey on non-local games and operator space theory"
[5] G. Pisier, "Grothendieck's theorem, past and present"

