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My Master degree research project was carried out in the Mathematics Department of the Univer-
sité Claude Bernard Lyon 1 (France) under the supervision of Guillaume Aubrun, professor in the
Probability Group there.

The task of distinguishing quantum states from accessible experimental data (i.e. from the outcomes
of measurements which are performed on the studied quantum system) lies at the heart of quantum
physics and quantum information theories. It is nonetheless by now a well-known fact that, when
dealing with large composite quantum systems, the discrimination ability of observers might drop.
One could thus roughly say that the guiding lead of the work achieved during my research placement
was to use techniques from high-dimensional convex geometry and probabilities to investigate some
of the numerous questions in this area.

The remainder of the current report is hence organized as follows.
Section 1 might be seen as a quick panorama of the mathematical framework in which quantum physics
and quantum information theories develop. In section 2, the cornerstone our work relies on, namely
the way one may systematically associate a norm to a measurement performed on a quantum system, is
precisely stated. The link is made with the general issue of distinguishing quantum states under some
allowed measurements. Section 3 is devoted to studying certain restricted classes of measurements on
high-dimensional multi-partite quantum systems. Quantitative results are obtained regarding the ca-
pacity observers may have of discriminating between two quantum states when the only measurements
they are able to perform are limited by locality constraints. The question studied in section 4 may be
described in straightforward terms in the following manner: what would the minimal requirements on
a randomly chosen measurement be so that it approximates the uniform measurement? All these plain
words are of course given a rigorous mathematical meaning, and an accurate answer is provided too.
As for section 5, the problem it deals with is not anymore the one of emulating one single measurement
but instead the one of emulating the set of all possible measurements on a given quantum system.
To finish with, section 6 establishes a summary of the various results obtained and enumerates a few
open questions, amongst many non-cited others.
Appendices A, B and C present required mathematical tools from geometric and probabilistic func-
tional analysis. They contain more than the strictly necessary ideas to our aim, but nevertheless
remain far from being exhaustive, proofs being either straightly omitted or only sketched. Appendix
D exposes a few of the fundamental already known results within the wide and still extensively stud-
ied field of quantum states’ geometry. As for appendix E, it is of much more technical nature: it
provides a rather detailed proof of a norm inequality on the space of Hermitians on a tensor product
Hilbert space (and which is needed at some point to generalize a result from the one-partite to the
multi-partite setting).
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1 Introduction: The postulates of quantum mechanics and its math-
ematical formalism

Quantum mechanics does not tell what laws a physical system must obey but only provides a concep-
tual framework for the development of such laws. It relies on a few basic postulates which connect
the physical world to the mathematical formalism that enables its description. The reader is referred
to [1] or [2] for general and detailed references on this topic, the account made here being clearly
minimalist.

Postulate 1: Associated to any isolated physical system is a Hilbert space H known as its state space.
The system is then completely described by its state, or density operator, which is a positive (hence
Hermitian) operator with trace one acting on H.
A state ρ is said to be pure if there exists a unit vector |ψ〉 ∈ H such that ρ = |ψ〉〈ψ|. It is otherwise
referred to as being mixed.
If a system is known to be in state ρi with probability pi for i ∈ I, then it may be described by the
density operator ρ =

∑
i∈I
piρi which is called a mixture of the density operators ρi.

Postulate 2: The state space of a composite physical system is the tensor product of the state spaces
of the component physical systems. Moreover, if we have K sub-systems, numbered 1 through K,
with sub-system i in state ρi for all 1 ≤ i ≤ K, then the joint state of the total system is ρ1⊗· · ·⊗ρn.

Postulate 3: The evolution of a closed quantum system (i.e. a system that is not interacting in any
way with other systems) is described by a unitary transformation: if the system is in state ρ at time
t and in state ρ′ at time t′, then there exists a unitary operator U acting on the system’s state space
(that depends only on t and t′, not on ρ and ρ′) such that ρ′ = UρU †.

Postulate 4: A quantum measurement performed on a physical system is described by a set {Mi, i ∈
I} of Positive Operator-Valued Measure (POVM) elements, which are positive operators acting on
the system’s state space satisfying the completeness equation

∑
i∈I
Mi = 1. The index i ∈ I refers to

the measurement outcomes that may occur in the experiment. If the state of the system immediately
before the measurement is ρ, then, for all i ∈ I, the probability that result i occurs is given by
Pρ(i) = Tr(Miρ) (so that the completeness equation simply expresses the fact that probabilities sum
to one). The fact that each state ρ generates a probability distribution Pρ on the outputs i ∈ I of a
given measurement {Mi, i ∈ I} is known as the Born rule for measurements.
We can actually be more precise: Mi being positive,

√
Mi is well defined, and the state of the system

just after the measurement that yielded outcome i is
√
Miρ
√
Mi
†

Tr(Miρ) .

It may be pointed out that the free evolution ρ 7→ UρU † and the measurement ρ 7→
√
Mρ
√
M
†

Tr(Mρ) are
two particular examples of quantum operations, i.e. operations that transform a quantum state into
another. The most general way of describing such transformations is by a Completely Positive and
Trace Preserving (CPTP) map.

• Λ : H(Cm)→ H(Cn) is Completely Positive (CP) if:

∀ p ∈ N, ∀ ρ ∈ H(Cm×p), ρ ≥ O⇒ (Λ⊗ Id)(ρ) ≥ O

Cm here describes the state space of the input principal system and Cn the state space of the
output principal system, whereas Cp should be thought of as the state space of any environment
the system of interest might be coupled with. Thus, positivity of operators on the space of the
global composite system is preserved when applying Λ to the part that acts on the principal
system’s space and leaving the part that acts on the environment’s space invariant.

• Λ : H(Cm)→ H(Cn) is Trace Preserving (TP) if:

∀ ρ ∈ H(Cm), ρ ≥ O⇒ TrΛ(ρ) = Trρ
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Λ being a CPTP map is actually equivalent to the existence of so-called Kraus operators (Vi)i∈I
that satisfy the completeness relation

∑
i∈I

ViV
†
i = 1 and that are such that Λ can be written in the

operator-sum representation as Λ(ρ) =
∑
i∈I
ViρV

†
i .

2 Correspondence between measurements and symmetric convex
bodies

2.1 General setting

Let M = (Mi)i∈I be a POVM on Cd. Denoting by {|i〉, i ∈ I} an orthonormal basis of C|I|, we may
associate to M the following CPTP map (as just defined in section 1 above):

M : ∆ ∈ H(Cd) 7→
∑
i∈I

Tr(Mi∆)|i〉〈i| ∈ H
(
C
|I|)

The measurement norm associated to M is then defined as:

∀ ∆ ∈ H(Cd), ‖∆‖M := ‖M(∆)‖1 =
∑
i∈I

∣∣Tr(Mi∆)
∣∣

More generally, one can define the measurement norm associated to a whole set M of POVMs on Cd

as: ‖ · ‖M := sup
M∈M

‖ · ‖M.

Remark 2.1 Such designation seems to presume that the quantity we defined above is a norm. It is
actually, whatever the set of POVMs M, a semi-norm: it is non-negative, homogeneous and obeys
the triangle inequality. It may however vanish on non-zero Hermitians in the general case. This is
excluded when the set of POVMs M is informationally complete, i.e. when:

∀ ∆ ∈ H(Cd), ∆ 6= 0 ⇒ ∃ (Mi)i∈I ∈M, ∃ i0 ∈ I : Tr(Mi0∆) 6= 0

This is equivalent to demanding that: Span({Mi, i ∈ I, (Mi)i∈I ∈M}) = H(Cd), so that any density
operator ρ on Cd can be reconstructed from its outcome statistics {Tr(Miρ), i ∈ I, (Mi)i∈I ∈ M}
when measures from the set M are carried on (which justifies the naming informationally complete).
This especially implies that the total number of (distinct) POVM operators in M is greater than
d2 = dim H(Cd). All the sets of POVMs we will later be lead to consider will have such property.

Something that is worth pointing at is that, for any set M of POVMs on Cd, there exists a set M̃ of
2-outcome POVMs on Cd which is such that ‖ · ‖M = ‖ · ‖

M̃
. It may be explicitly defined as:

M̃ :=

(M, 1−M
)
, ∃ (Mi)i∈I ∈M, ∃ Ĩ ⊂ I : M =

∑
i∈Ĩ

Mi


Indeed, for each ∆ ∈ H(Cd), defining I(∆) := {i ∈ I, Tr(Mi∆) ≥ 0}, and just recalling that∑
i∈I(∆)

Mi +
∑

i∈I\I(∆)

Mi =
∑
i∈I
Mi = 1, we see that:∑

i∈I

∣∣Tr(Mi∆)
∣∣ =

∣∣∣ ∑
i∈I(∆)

Tr(Mi∆)
∣∣∣+ ∣∣∣ ∑

i∈I\I(∆)

Tr(Mi∆)
∣∣∣ =

∣∣∣Tr
(( ∑

i∈I(∆)

Mi

)
∆
)∣∣∣+ ∣∣∣Tr

((
1−

∑
i∈I(∆)

Mi

)
∆
)∣∣∣

That is precisely: ‖∆‖(Mi)i∈I = ‖∆‖(M(∆),1−M(∆)) for M(∆) :=
∑

i∈I(∆)

Mi.
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Hence, one may associate to any set M of POVMs on Cd a symmetric convex body KM, which is
contained in the∞-norm unit ball of H(Cd) (i.e. the operator interval [−1; 1]) and which contains ±1:

KM := Conv
{

2M − 1, (M, 1−M) ∈ M̃
}

This actually defines a one-to-one correspondence between informationally complete sets of POVMs
on Cd and symmetric convex bodies with non-empty interior contained in the ∞-norm unit ball of
H(Cd) and containing ±1.

Furthermore: ∀ ∆ ∈ H(Cd), ‖∆‖M = ‖∆‖
M̃

= sup
A∈KM

∣∣Tr(A∆)
∣∣ = g(KM)◦(∆).

This means that: B‖·‖M = Bg(KM)◦ =
(
KM

)◦, or equivalently that: KM =
(
B‖·‖M

)◦.
The reader is referred to appendix A.1 for all the used notations regarding norms associated to
symmetric convex bodies.

Example 2.2 The symmetric convex body associated with the set ALL of all POVMs on Cd is nothing
else than the ∞-norm unit ball: KALL = Bd

‖·‖∞.
Indeed: (M, 1−M) POVM ⇔ 0 ≤M ≤ 1 ⇔ −1 ≤ 2M − 1 ≤ 1.
As a consequence, the measurement norm associated with ALL is nothing else than the 1-norm:
‖ · ‖ALL = g(KALL)◦ = g(

Bd‖·‖∞

)◦ = gBd‖·‖1
= ‖ · ‖1 (cf appendix A.1).

2.2 Link with the task of distinguishing two quantum states under restricted
families of measurements

Let us consider the situation where a system (with associated Hilbert space Cd) can be either in state
ρ or in state σ, with equal prior probabilities 1

2 . We would like to guess with the smallest probabil-
ity of error in which of those two states it is by only performing one given POVM M = (Mi)i∈I on
it. We therefore base our decision on the so-called maximum likelihood rule. Namely, knowing that
Tr(Miρ) > Tr(Miσ) for i ∈ Ĩ and Tr(Miρ) < Tr(Miσ) for i ∈ I \ Ĩ, we decide on ρ if outcome i ∈ Ĩ
is observed and on σ otherwise. The probability of error is thus, denoting by s the random variable
“effective state of the system” and by d the random variable “state of the system we decide to be
more likely after carrying out the measurement”:
Pe = P(s = σ, d = ρ) + P(s = ρ, d = σ) = P(s = σ)P(d = ρ|s = σ) + P(s = ρ)P(d = σ|s = ρ), that is:

Pe =
1
2

∑
i∈Ĩ

Tr(Miσ) +
1
2

∑
i∈I\Ĩ

Tr(Miρ) =
1
2

(
1−

∑
i∈I

∣∣∣∣Tr
[
Mi

(
1
2
ρ− 1

2
σ

)]∣∣∣∣
)

=
1
2

(
1−

∥∥∥∥1
2
ρ− 1

2
σ

∥∥∥∥
M

)
In this context, the quantity

∥∥1
2ρ−

1
2σ
∥∥

M
is therefore called the bias of the POVM M on the state

pair (ρ, σ).

Remark 2.3 We can easily generalize the discrimination task described above to states ρ and σ with
non necessarily equal prior probabilities, q and 1− q respectively. Indeed, the only change in that case
is that we are now dealing with the general Hermitian qρ−(1−q)σ instead of the traceless one 1

2ρ−
1
2σ.

So for instance, the probability of error is then equal to: Pe =
1
2
(
1−

∥∥qρ− (1− q)σ
∥∥

M

)
.

This result is actually nothing more than the generalization of a classical statistics’ result in hypothesis
testing (see for instance [3] for a general reference). There, the optimal discrimination between two
hypotheses modelled as probability distributions {P (i), i ∈ I} and {Q(i), i ∈ I}, with prior probabilities
q and 1−q respectively, is in fact given by the maximum likelihood rule, so that the minimum probability

of error takes value: Pe =
1
2
(
1−

∥∥qP − (1− q)Q
∥∥

1

)
, where ‖f‖1 :=

∑
i∈I
|f(i)|.

Suppose we are now interested in looking for the maximum bias achievable on a state pair (ρ, σ) (which
corresponds to the minimum probability of error when trying to discriminate between states ρ and
σ) when we are allowed POVMs in a given set M. The quantity we will be lead to consider is then
precisely:

∥∥1
2ρ−

1
2σ
∥∥
M

.
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One general issue in the field of quantum state discrimination is to compare, for various information-
ally complete sets of POVMs M, the maximum bias achievable in discriminating two states when
only measurements in M are allowed to the one achievable when all measurements are allowed. As
just stated, this boils down to comparing the distinguishability norm associated with M to the one
associated with ALL, i.e. as pointed out in example 2.2 to the 1-norm. And actually, the result
‖ · ‖ALL = ‖ · ‖1 was one of the seminal observations by Holevo [4] and Helstrom [5] on optimal
quantum state distinction.

2.3 What can one say about the value of a given measurement norm knowing the
mean-width of its associated symmetric convex body?

Let M and M′ be two informationally complete sets of POVMs on Cd.
As explained in section 2.1, showing that ∀ ∆ ∈ H(Cd), ‖∆‖M ≤ ‖∆‖M′ amounts to showing that
KM ⊂ KM′ .
Now, it may happen that such inclusion does not hold although KM is “much smaller” than KM′ . In
such case, one would expect that for “most” ∆ ∈ H(Cd), ‖∆‖M ≤ ‖∆‖M′ .
It is precisely this intuitive idea that we will try to formalize rigorously in this section.

Let M be an informationally complete set of POVMs on Cd.

First of all, we know that: ‖ · ‖M ≤ ‖ · ‖ALL = ‖ · ‖1 ≤
√
d‖ · ‖2. So, denoting by Sd‖·‖2 the unit sphere

for the 2-norm on H(Cd), it holds that ‖ · ‖M : Sd‖·‖2 7→ R+ is a
√
d-lipschitz function.

What is more, by definition of the mean-width w (cf appendix A.3) we have:

E
U
(
Sd‖·‖2

)‖ · ‖M = w
((
Bd
‖·‖M

)◦)
= w

(
KM

)
, where U

(
Sd‖·‖2

)
stands for the probability distribution

over Sd‖·‖2 induced by the Hilbert-Schmidt distance on H(Cd).

Hence, by the concentration inequality for lipschitz functions on the d2-dimensional real euclidean unit
sphere Sd‖·‖2 ≡ S

d2

2 (R) (cf example C.2) we get:

∀ 0 < ε < 1, P
∆∼U

(
Sd‖·‖2

) (‖∆‖M /∈
[
(1− ε)w

(
KM

)
; (1 + ε)w

(
KM

)])
≤ 2e−d

2
(
w
(
KM

)
/
√
d
)2
ε2/2

Taking for instance ε = 1
2 , this yields equivalently:

P
∆∼U

(
Sd‖·‖2

) (1
2
w
(
KM

)
≤ ‖∆‖M ≤

3
2
w
(
KM

))
≥ 1− 2e−dw

(
KM

)2
/8 (1)

By homogeneity, this implies that for any probability distribution νHS(d) on H(Cd) which is induced
by the Hilbert-Schmidt distance on H(Cd):

P∆∼νHS(d)

(
1
2
w
(
KM

)
‖∆‖2 ≤ ‖∆‖M ≤

3
2
w
(
KM

)
‖∆‖2

)
≥ 1− 2e−dw

(
KM

)2
/8 (2)

Remark 2.4 In the case when the set of POVMs under consideration is made of one single POVM,
the result provided by equation 2 turns out to be, in some sense, quite disappointing.

Indeed, one given rank-1 POVM M on Cd (informationally complete or not) may be generically written
in the form M := {d|ψ〉〈ψ|dpM (ψ), |ψ〉 ∈ Sd2(C)} with dpM an isotropic probability distribution over
Sd2(C) (which means that

∫
|ψ〉∈Sd2 (C) dpM (ψ) = 1 and

∫
|ψ〉∈Sd2 (C) |ψ〉〈ψ|dpM (ψ) = 1

d).

With these notations, we have: ∀ ∆ ∈ H(Cd), ‖∆‖M = d

∫
|ψ〉∈Sd2 (C)

|〈ψ|∆|ψ〉|dpM (ψ).

And subsequently: w(KM ) = E
∆∼U

(
Sd‖·‖2

)(‖∆‖M) = d

∫
|ψ〉∈Sd2 (C)

E
∆∼U

(
Sd‖·‖2

)(|〈ψ|∆|ψ〉|)dpM (ψ).

Now, referring to appendix B.3 for all useful definitions and statements, we see that for all |ψ〉 ∈ Sd2(C):
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E
∆∼U

(
Sd‖·‖2

)(|〈ψ|∆|ψ〉|) = 1
γd2

EG∼GUE(d)

(
|〈ψ|G|ψ〉|

)
= 1

γd2
Eg∼N (0,1)

(
|g|
)

= 1
γd2

√
2
π

Hence, for any rank-1 POVM M on Cd, we have: w(KM ) =
d

γd2

√
2
π
∼

d→+∞

√
2
π

.

Inserting this into equation 2 shows that, for any rank-1 POVM M on Cd:

P∆∼νHS(d)

(
1√
2π
‖∆‖2 ≤ ‖∆‖M ≤

3√
2π
‖∆‖2

)
≥ 1− 2e−d/4π

What is more, this result remains true under restriction to traceless Hermitians (cf remark B.7):

P∆∼νHS(d)
Tr ∆=0

(
1√
2π
‖∆‖2 ≤ ‖∆‖M ≤

3√
2π
‖∆‖2

)
≥ 1− 2e−d/4π

Besides, we know that in the particular case of the uniform POVM U on Cd, its measurement-norm is
dimension-independently equivalent to the 2-norm on traceless Hermitians (which was really stressed
upon for the first time in [42]):

∀ ∆ ∈ H(Cd), Tr ∆ = 0,
1
3
‖∆‖2 ≤ ‖∆‖U ≤ ‖∆‖2

What we thus see is that, for a general rank-1 POVM M on Cd, this dimension-independent equivalence
with the 2-norm of course does not hold for all traceless Hermitians, but nonetheless for “most” of
them (and for a growing proportion of them when the dimension d increases).

3 Locally restricted measurements on a multi-partite quantum sys-
tem

Let H1, . . . ,HK be K finite dimensional Hilbert spaces (with di := dim Hi for all 1 ≤ i ≤ K) and
H = H1 ⊗ · · · ⊗HK be their tensor product Hilbert space (of dimension D := d1 × · · · × dK).

3.1 Different classes of locally restricted POVMs

Several classes of POVMs can be defined on the K-partite Hilbert space H due to various levels of
locality restrictions (consult [34] or [35] for further information).

The most restricted class of POVMs on H is the one of local measurements whose elements are tensor
products of measurements on each of the sub-systems:

LO :=

(M (1)
j1
⊗ · · · ⊗M (K)

jK

)
j1∈J1,...,jK∈JK

, M
(i)
ji
≥ 0, ji ∈ Ji,

∑
ji∈Ji

M
(i)
ji

= 1, 1 ≤ i ≤ K


More generally, LOCC is the class of measurements that can be implemented by a finite sequence of
local operations on the sub-systems followed by classical communication between the parties.

Then, there is the class of separable measurements whose elements are the measurements on H made
of operators that can be factorized as a tensor product of operators acting only on one sub-system:

SEP :=

(M (1)
j ⊗ · · · ⊗M

(K)
j

)
j∈J

, M
(i)
j ≥ 0, j ∈ J, 1 ≤ i ≤ K,

∑
j∈J

M
(1)
j ⊗ · · · ⊗M

(K)
j = 1
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And finally, there is the class of the positive under partial transpose measurements whose elements
are the measurements on H made of operators that remain positive when partially transposed on any
combination of the sub-systems:

PPT :=

(Mj)j∈J , M
ΓI
j ≥ 0, j ∈ J, I ⊂ {1, . . . ,K},

∑
j∈J

Mj = 1


where, for all I ⊂ {1, . . . ,K} the partial transposition on HI :=

⊗
i∈I

Hi is defined by its action on

factorized operators on H: (M1 ⊗ · · · ⊗ MK)ΓI :=
(⊗
i∈I
MT
i

)
⊗
(⊗
i/∈I
Mi

)
, MT

i denoting the usual

transpose of Mi.
Let us point out that, even though the expression of a matrix’s transpose depends on the chosen basis,
its eigenvalues on the contrary are intrinsic. So the PPT notion is indeed well defined.

Remark 3.1 It is clear from the definitions that we have the chain of inclusions:

LO ⊂ LOCC ⊂ SEP ⊂ PPT ⊂ ALL

The most widely used inclusions in many questions dealing with operations on multi-partite quantum
systems are certainly LOCC ⊂ SEP and LOCC ⊂ PPT. Indeed, however natural it might seem
in this context, the class of LOCC operations is mathematically hard to characterize, contrary to the
ones of SEP operations and even more so of PPT operations.
The reader may look at [27] for a general overview of some issues related to this topic, and at [28],
[29] or [30] for a specific description of some striking phenomena one has to deal with when trying to
grasp the class of LOCC operations.

3.2 Bi-partite case

We consider here the case when H = H1 ⊗ H2 ≡ Cd ⊗ Cd is a bi-partite Hilbert space whose parties
have equal finite dimension d. The sets of 2-outcome POVMs associated to the sets of POVMs LO,
SEP and PPT on H are then (consult section 2.1 for the required definitions)

L̃O =

(M, 1−M), M =
∑

(j1,j2)∈I

M
(1)
j1
⊗M (2)

j2
, I ⊂ J1 × J2, M

(k)
jk
≥ 0, jk ∈ Jk,

∑
jk∈Jk

M
(k)
jk

= 1, k ∈ {1, 2}


S̃EP =

(M, 1−M), M =
∑
j∈I

M
(1)
j ⊗M

(2)
j , I ⊂ J, M (k)

j ≥ 0, j ∈ J, k ∈ {1, 2},
∑
j∈J

M
(1)
j ⊗M

(2)
j = 1


P̃PT =

(M, 1−M), M =
∑
j∈I

Mj , I ⊂ J, Mj ≥ 0,MΓ
j ≥ 0, j ∈ J,

∑
j∈J

Mj = 1



The main results the two coming sections 3.2.1 and 3.2.2 will lead us to are summarized below (consult
appendix A.3 for the definition of vrad and w, and section 2.1 for the definition of KSEP and KPPT):

Theorem 3.2 (Volume-radii and mean-widths of the symmetric convex bodies associated with the sets
of POVMs SEP and PPT on Cd ⊗ Cd)

d ' vrad (KPPT) ≤ w (KPPT) ' d and
√
d ' vrad (KSEP) ≤ w (KSEP) '

√
d
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A very simple idea we will use in an essential way to get both estimates in theorem 3.2 is the following:
If one wants to evaluate the mean-width and the volume-radius of a given convex body K, it is enough
to find an upper-bound on its mean-width and a lower-bound on its volume-radius, and to show that
those two bounds are of the same order of magnitude, since we know thanks to Urysohn’s inequality
(theorem A.12) that vrad(K) ≤ w(K) always holds.

One theorem we shall also make repeated use of in the sequel, in order to come to the statements in
theorem 3.2, is the one below (cf [19] for the original statement and proof):

Theorem 3.3 (Milman-Pajor inequality)
Let K,L be convex bodies with the same center of gravity.
Then: vrad(K ∩ L)vrad(K − L) ≥ vrad(K)vrad(L).

As important special instances of the general statement from theorem 3.3, we have that, for any convex
body K with center of gravity at the origin:
First of all: vrad(K ∩ −K)vrad(K + K) ≥ vrad(K)vrad(−K). But since vrad(−K) = vrad(K) and

vrad(K +K) = vrad(2K) = 2vrad(K), we get in the end: vrad(K ∩ −K) ≥ 1
2

vrad(K).

More generally, for any orthogonal transformation θ: vrad(K∩θ(K))vrad(K−θ(K)) ≥ vrad(K)vrad(θ(K)).
Now: vrad(θ(K)) = vrad(K) and vrad(K − θ(K)) ≤ w(K − θ(K)) = w(K) + w(−θ(K)) = 2w(K).

So eventually: vrad(K ∩ θ(K)) ≥ 1
2

vrad(K)2

w(K)
.

Remark 3.4 Theorem 3.3 is actually itself a corollary of a result that applies in a much wider context,
namely the one of rotation invariant and log-concave measures:
Let α, β ≥ 0 and consider the measure µ on Rn with density dµ(x) = αe−β‖x‖

2
2dx.

Let also 0 < θ < π
2 and K,L ⊂ Rn two convex bodies.

Set z := sin θ
µ(K)

∫
K xdµ(x)− cos θ

µ(L)

∫
L ydµ(y) and C(z) :=

(
1

cos θK −
sin θ
cos θz

)
∩
(

1
sin θL+ cos θ

sin θ z
)
.

Then: µ(K)µ(L) ≤ µ(sin θK − cos θL)µ(C(z)).

3.2.1 PPT-measurements

Let us focus first on the set PPT. We see that:
(M, 1−M) ∈ P̃PT ⇔ 0 ≤M,MΓ, 1−M, (1−M)Γ ≤ 1 ⇔ 0 ≤M,MΓ ≤ 1, so that:

KPPT = Conv
{

2M − 1, 0 ≤M,MΓ ≤ 1
}

=
(
Bd2

‖·‖∞

)
∩
(
Bd2

‖·‖∞

)Γ

Figure 1: Symmetric convex body associated with the set of POVMs PPT on Cd ⊗ Cd
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We thus have the immediate upper-bound on the mean-width of KPPT: w (KPPT) ≤ w
(
Bd2

‖·‖∞

)
' d.

To get a lower-bound on the volume-radius of KPPT, we may apply Milman-Pajor inequality (theorem
3.3) to the convex body Bd2

‖·‖∞ (which indeed has the origin as center of gravity) and to the orthogonal

transformation Γ: vrad (KPPT) ≥ 1
2

vrad
(
Bd2

‖·‖∞

)
w
(
Bd2

‖·‖∞

) vrad
(
Bd2

‖·‖∞

)
.

Hence, recalling that vrad
(
Bd2

‖·‖∞

)
' w

(
Bd2

‖·‖∞

)
(cf example B.8): vrad (KPPT) & vrad

(
Bd2

‖·‖∞

)
' d.

Remark 3.5 In this precise case, it is actually quite easy to be much more definite.
In fact, we know that: vrad

(
Bd2

‖·‖∞

)
∼

d→+∞
e1/4

π d (cf theorem A.10), whereas: w
(
Bd2

‖·‖∞

)
∼

d→+∞
8

3πd

(cf example B.8).
We consequently have, when d→ +∞, the quantitative estimate:

3e1/2

16π
(
1 + o(1)

)
d ≤ vrad (KPPT) ≤ w (KPPT) ≤ 8

3π
(
1 + o(1)

)
d

3.2.2 SEP-measurements

Let us now look at the set SEP. Denoting by CS the cone of separable positive operators on Cd ⊗Cd
(definition in appendix D.1) we see that: (M, 1−M) ∈ S̃EP ⇔ M, 1−M ∈ CS ∩Bd2

‖·‖∞ , so that:

KSEP = Conv
{

2M − 1, M, 1−M ∈ CS ∩Bd2

‖·‖∞

}
=
{

2CS ∩Bd2

‖·‖∞ − 1
}
∩
{

1− 2CS ∩Bd2

‖·‖∞

}

Figure 2: Symmetric convex body associated with the set of POVMs SEP on Cd ⊗ Cd

In the sequel, we will denote by S the set of separable states on Cd ⊗ Cd (definition in section 1 or
appendix D.1), which is a convex body that is included in the hyperplane of H(Cd ⊗ Cd) of trace 1
Hermitians on Cd ⊗ Cd.
More generally, for any convex body S which is included in a hyperplane of H(Cd ⊗ Cd), we will
define the two following associated convex sets of full dimension (see again appendix D.1 for further
information):

• CS the cone of basis S in H(Cd ⊗ Cd).

• ΣS the symmetrization of S in H(Cd ⊗ Cd).
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Firstly, we may notice that:
(
CS ∩Bd2

‖·‖∞

)
⊂
(
CS ∩ d2Bd2

‖·‖1

)
= Cd2S .

Consequently: KSEP ⊂ {2Cd2S − 1} ∩ {1− 2Cd2S} ⊂ 2Σd2S .

We thus have the immediate upper-bound: w (KSEP) ≤ w (2Σd2S) ' d2w (ΣS).
Now, we know that w (ΣS) ' 1

d3/2 (cf theorem D.3), so we get in the end the upper-bound on the
mean-width of KSEP: w (KSEP) .

√
d.

Secondly, for any fixed 1 < α < 2, we have:
(
CS ∩Bd2

‖·‖∞

)
⊃
(
CS ∩ d2

α B
d2

‖·‖1 ∩B
d2

‖·‖∞

)
= 1

αCαB̃d2/α∩d2S ,

where for all s ∈ R, we have defined B̃s as: B̃s := {M ∈ H(Cd ⊗ Cd), −1 ≤M ≤ 1, TrM = s}.

Hence:
{

2
α
C
αB̃d2/α∩d2S − 1

}
∩
{

1− 2
α
C
αB̃d2/α∩d2S

}
⊂ KSEP.

Yet, for any convex body K in H(Cd ⊗ Cd), we have by Fubini:

Vol(K) =
∫ +∞

−∞
Vol(K ∩Hs)

ds
d

=
∫ +∞

−∞
d Vol(K ∩Htd2)dt, where for all s ∈ R, we have defined Hs

as the hyperplane of trace s Hermitians on Cd ⊗ Cd: Hs := {M ∈ H(Cd ⊗ Cd), TrM = s} (whose
Hilbert-Schmidt distance to the origin is |s|d ).

And what is more, if S is a convex body in H(Cd ⊗ Cd) which is included in the hyperplane Hd2 and
which is symmetric with respect to 1 in Hd2 , then for any λ > 0 and t ∈ R, we have:

On the one hand, {λCS − 1} ∩Htd2 =

{
{(1 + t)S − 1} if − 1 ≤ t ≤ λ− 1
∅ otherwise

, as shown on figure 3.

And analogously on the other hand, {1− λCS} ∩Htd2 =

{
{1− (1− t)S} if − (λ− 1) ≤ t ≤ 1
∅ otherwise

.

Figure 3: Section of the cone {λCS − 1} by the hyperplane Htd2 in H(Cd ⊗ Cd)
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Subsequently, regarding the convex body KSEP, we have for any t ∈ R:

KSEP ∩Htd2 ⊃
{

2
α
C
αB̃d2/α∩d2S − 1

}
∩
{

1− 2
α
C
αB̃d2/α∩d2S

}
∩Htd2

=

{
B̃td2 ∩

{
(1 + t)d2S − 1

}
∩
{

1− (1− t)d2S
}

if −
(

2
α − 1

)
≤ t ≤ 2

α − 1
∅ otherwise

And therefore: Vol
(
KSEP

)
≥
∫ 2

α
−1

−
(

2
α
−1
) d Vol

(
B̃td2 ∩

{
(1 + t)d2S − 1

}
∩
{

1− (1− t)d2S
})

dt

Furthermore, for any fixed δ > 0 and any convex bodies Kt ⊂ Htd2 , −δ ≤ t ≤ δ, first applying Jensen’s
inequality to the concave function (·)1/d4

, and then setting v := sup
−δ≤t≤δ

[Vol(Kt)], one gets:[∫ δ

−δ
d Vol(Kt)dt

]1/d4

≥ 2δ
(
d

2δ

)1/d4 ∫ δ

−δ
[Vol(Kt)]

1/d4

dt ≥

(
(2δ)d

4−1d

v1/(d4−1)

)1/d4 ∫ δ

−δ
[Vol(Kt)]

1/(d4−1) dt

Since it holds additionally that
[
Vol

(
Bd4

2

)]1/d4

'
[
Vol

(
Bd4−1

2

)]1/(d4−1)
' 1

d4 , one has in the end:[∫ δ
−δ d Vol(Kt)dt

Vol
(
Bd4

2

) ]1/d4

&
∫ δ

−δ

 Vol(Kt)

Vol
(
Bd4−1

2

)
1/(d4−1)

dt.

As far as KSEP is concerned, this implies in terms of volume-radius:

vrad
(
KSEP

)
&
∫ 2

α
−1

−
(

2
α
−1
) d2vrad

(
1
d2
B̃td2 ∩

{
(1 + t)S − 1

d2

}
∩
{

1
d2
− (1− t)S

})
dt

Now, for all −
(

2
α−1

)
≤ t ≤ 2

α−1, we may apply Milman-Pajor inequality (theorem 3.3) to the convex
bodies 1

d2 B̃td2 and Ωt :=
{

(1 + t)S − 1
d2

}
∩
{

1
d2 − (1− t)S

}
(which indeed have same center of gravity

t
d2 1 as justified by theorem D.1): vrad

(
1
d2
B̃td2 ∩ Ωt

)
≥

vrad
(

1
d2 B̃td2

)
vrad (Ωt)

vrad
(

1
d2 B̃td2 − Ωt

)
And applying this same inequality (theorem 3.3) once more, this time to the convex bodies

{
(1 + t)S − 1

d2

}
and

{
1
d2 − (1− t)S

}
(which indeed have same center of gravity t

d2 1 as justified by theorem D.1) gives:

vrad (Ωt) ≥
vrad

(
{(1 + t)S − 1

d2 }
)

vrad
(
{ 1
d2 − (1− t)S}

)
vrad

(
{(1 + t)S − 1

d2 } − { 1
d2 − (1− t)S}

) =
(1 + t)(1− t)

2
vrad (S)

In order to go any further, we shall need the following result:

Lemma 3.6 (Mean-width of hyperplane sections of the ∞-norm unit ball)

∀ 0 ≤ t ≤ 1, w
(
B̃td2

)
& (1− t)w

(
Bd2

‖·‖∞

)
and ∀ − 1 ≤ t ≤ 0, w

(
B̃td2

)
& (1 + t)w

(
Bd2

‖·‖∞

)
Proof : Two preliminary statements will be necessary to come to the content of lemma 3.6:

• ∀ 0 ≤ t ≤ 1,
{

1 + (1− t)B̃0

}
⊂ B̃td2 and ∀ − 1 ≤ t ≤ 0,

{
− 1 + (1 + t)B̃0

}
⊂ B̃td2

Indeed, for 0 ≤ t ≤ 1: M ∈
{

1 + (1− t)B̃0

}
⇒

{
Tr M = td2

−1 ≤ −(1− 2t)1 ≤M ≤ 1
⇒ M ∈ B̃td2 .

And for −1 ≤ t ≤ 0: M ∈
{
− 1 + (1 + t)B̃0

}
⇒

{
Tr M = td2

−1 ≤ −(1 + 2t)1 ≤M ≤ 1
⇒ M ∈ B̃td2 .

• vrad
(
B̃0

)
& vrad

(
Bd2

‖·‖∞

)
Indeed, by Brunn’s principle (corollary A.6), Bd2

‖·‖∞ being a symmetric convex body, the function
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s ∈ R 7→ Vol
(
B̃s
)

= Vol
(
Bd2

‖·‖∞ ∩Hs

)
is maximal in 0.

Hence: Vol
(
Bd2

‖·‖∞

)
=
∫ 1

−1
d Vol

(
B̃td2

)
dt ≤ 2d Vol

(
B̃0

)
, which implies the advertized fact after

noting that:
[
Vol

(
Bd4

2

)]1/d4

'
[
Vol

(
Bd4−1

2

)]1/(d4−1)
and

[
2d
[
Vol

(
Bd2

‖·‖∞

)]1/(d4−1)
]−1/d4

' 1.

Figure 4: Section of the ball Bd2

‖·‖∞ by the hyperplane Htd2 in H(Cd ⊗ Cd)

These two assertions are illustrated by figure 4, and putting them together yields:
If 0 ≤ t ≤ 1: w

(
B̃td2

)
≥ vrad

(
B̃td2

)
≥ (1− t)vrad

(
B̃0

)
& (1− t)vrad

(
Bd2

‖·‖∞

)
' (1− t)w

(
Bd2

‖·‖∞

)
, the

first inequality being by Urysohn’s inequality (theorem A.12) and the last equality by example B.8.
And similarly, if −1 ≤ t ≤ 0: w

(
B̃td2

)
& (1 + t)w

(
Bd2

‖·‖∞

)
.

Which are precisely the results stated in lemma 3.6.

Keeping this in mind and coming back to our initial issue, we see that:

For 0 ≤ t ≤ 2
α−1:

{
w
(

1
d2 B̃td2

)
& (1−t)

d2 w
(
Bd2

‖·‖∞

)
' (1−t)

d (because w
(
Bd2

‖·‖∞

)
' d by example B.8)

w (Ωt) ≤ w ((1− t)S) ' 1−t
d3/2 (because w(S) ' 1

d3/2 by theorem D.3)

And for −
(

2
α − 1

)
≤ t ≤ 0:

{
w
(

1
d2 B̃td2

)
& (1+t)

d2 w
(
Bd2

‖·‖∞

)
' (1+t)

d

w (Ωt) ≤ w ((1 + t)S) ' 1+t
d3/2

Subsequently, for all −
(

2
α − 1

)
≤ t ≤ 2

α − 1: w (Ωt) ≤ w
(

1
d2 B̃td2

)
, and therefore:

vrad
(

1
d2 B̃td2 − Ωt

)
≤ w

(
1
d2 B̃td2 − Ωt

)
= w

(
1
d2 B̃td2

)
+w (Ωt) . w

(
1
d2 B̃td2

)
, where we used Urysohn’s

inequality (theorem A.12) to get the first inequality.

Hence, since vrad
(

1
d2 B̃td2

)
' w

(
1
d2 B̃td2

)
(cf example B.8), we finally get for all −

(
2
α−1

)
≤ t ≤ 2

α−1:

vrad
(

1
d2
B̃td2 ∩ Ωt

)
&

vrad
(

1
d2 B̃td2

)
w
(

1
d2 B̃td2

) (1 + t)(1− t)
2

vrad(S) &
(1 + t)(1− t)

2
vrad(S)

Consequently, what we come to in the end is: vrad (KSEP) & d2vrad(S).
And since we know that vrad(S) ' 1

d3/2 (cf theorem D.3), we eventually get the lower-bound on the
volume-radius of KSEP: vrad (KSEP) &

√
d.
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3.2.3 “Typical” value of the PPT-norm and the SEP-norm

It was mentionned earlier on (cf section 2.3) that, if one is interested in the most probable value
of a given measurement norm, it is the mean-width rather than the volume-radius of its associated
symmetric convex body which is the relevant quantity.
What theorem 3.2 especially tells us is that the mean-widths of the symmetric convex bodies associated
with the sets of POVMs PPT and SEP on Cd ⊗ Cd are of order of magnitude:

w (KPPT) ' d and w (KSEP) '
√
d

In terms of the measurement norms ‖ · ‖PPT and ‖ · ‖SEP on H(Cd ⊗ Cd), this implies by equation 1:

∃ C,C ′ > 0 :


P

∆∼U
(
Sd

2

‖·‖2

) (C
2 d ≤ ‖∆‖PPT ≤ 3C

2 d
)
≥ 1− 2e−C

2d4/8

P
∆∼U

(
Sd

2

‖·‖2

) (C′
2

√
d ≤ ‖∆‖SEP ≤ 3C′

2

√
d
)
≥ 1− 2e−C

′2d3/8

3.3 Multi-partite case

The results obtained in the bi-partite setting H = H1 ⊗ H2 ≡ Cd ⊗ Cd may in fact be quite directly
generalized to the multi-partite one H = H1 ⊗ · · · ⊗HK ≡ (Cd)⊗K .

Denoting by PPT(d,K) and SEP(d,K) the sets of, respectively, positive under partial transpose and
separable POVMs on (Cd)⊗K we have:

KPPT(d,K) =
⋂

I⊂{1,...,K}

(
BdK

‖·‖∞

)ΓI

KSEP(d,K) =
{

2CS(d,K) ∩BdK

‖·‖∞ − 1
}
∩
{

1− 2CS(d,K) ∩BdK

‖·‖∞

}
where CS(d,K) stands for the cone of separable positive operators on (Cd)⊗K (definition in appendix
D.1).

3.3.1 PPT-measurements

To begin with, let us look at KPPT(d,K).

First of all, we still have the obvious upper-bound on the mean-width of KPPT(d,K):

w
(
KPPT(d,K)

)
≤ w

(
BdK

‖·‖∞

)
'
√
dK

Moreover, iterating Milman-Pajor inequality (theorem 3.3), we see that if K1, . . . ,Km are m convex

bodies with the same center of gravity, then: vrad

(
m⋂
i=1

Ki

)
≥

m∏
i=1

vrad(Ki)

m−1∏
i=1

vrad

(
Ki −

m⋂
j=i+1

Kj

) .

Hence, in the particular case when Ki = θi(K), 1 ≤ i ≤ m, for a given convex body K with center of
gravity at the origin and given orthogonal transformations θ1, . . . , θm, we get:

vrad

(
m⋂
i=1

θi(K)

)
≥ 1

2m−1

[
vrad(K)

]m[
w(K)]m−1

, due to the fact that:
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vrad(θi(K)) = vrad(K), 1 ≤ i ≤ m

vrad
(
θi(K)−

m⋂
j=i+1

θj(K)
)
≤ w

(
θi(K)−

m⋂
j=i+1

θj(K)
)
≤ w(θi(K)) + w(θi+1(K)) = 2w(K), 1 ≤ i ≤ m− 1

If additionally, w(K) ' vrad(K), we eventually come to: vrad

(
m⋂
i=1

θi(K)

)
&

1
2m−1

vrad(K).

Applying this general result to the convex body BdK

‖·‖∞ and to the orthogonal transformations ΓI ,
I ⊂ {1, . . . ,K}, we obtain the lower-bound on the volume-radius of KPPT(d,K):

vrad
(
KPPT(d,K)

)
&

1
22K

vrad
(
BdK

‖·‖∞

)
' 1

22K

√
dK

Theorem 3.7 (Volume-radius and mean-width of the symmetric convex body associated with the set
of POVMs PPT on (Cd)⊗K)

1
22K

dK/2 . vrad
(
KPPT(d,K)

)
≤ w

(
KPPT(d,K)

)
. dK/2

Remark 3.8 As in the bi-partite case, we can be more precise (thanks to the explicit results of theorem
A.10 and example B.8) and provide the quantitative estimate, for K fixed and d→ +∞:(

3e1/4

16

)2K−1−1
e1/4

π
dK/2

(
1 + o(1)

)
≤ vrad

(
KPPT(d,K)

)
≤ w

(
KPPT(d,K)

)
≤ 8

3π
dK/2

(
1 + o(1)

)

3.3.2 SEP-measurements

Let us look now at KSEP(d,K).

In complete analogy to the bi-partite case, denoting by S(d,K) the convex set of separable states on
(Cd)⊗K (definition in section 1 or appendix D.1) we have that for any fixed 1 < α < 2:{

2
α
C
αB̃+

dK/α
∩dKS(d,K) − 1

}
∩
{

1− 2
α
C
αB̃+

dK/α
∩dKS(d,K)

}
⊂ KSEP(d,K) ⊂ 2ΣdKS(d,K)

Then:

w
(
2ΣdKS(d,K)

)
' dKw

(
S(d,K)

)
vrad

({
2
αCαB̃+

dK/α
∩dKS(d,K) − 1

}
∩
{

1− 2
αCαB̃+

dK/α
∩dKS(d,K)

})
' dKvrad

(
S(d,K)

) .

Besides, we know (cf theorem D.3 for a brief overview and [22] for a detailed account) that:

2−K

dK−1/2
. vrad

(
S(d,K)

)
≤ w

(
S(d,K)

)
.

√
K logK
dK−1/2

Theorem 3.9 (Volume-radius and mean-width of the symmetric convex body associated with the set
of POVMs SEP on (Cd)⊗K)

2−K
√
d . vrad

(
KSEP(d,K)

)
≤ w

(
KSEP(d,K)

)
.
√
K logK

√
d

3.3.3 “Typical” value of the PPT-norm and the SEP-norm

Regarding the mean-widths of KPPT(d,K) and KSEP(d,K), what we have shown is that, if we only focus
on the dimensional dependence and not on the number of party dependence, they scale as:

w
(
KPPT(d,K)

)
' dK/2 and w

(
KSEP(d,K)

)
'
√
d

17



Such information may then be plugged into equation 1 and hence translated into statements on the
“typical” values of the measurement norms ‖ · ‖PPT(d,K) and ‖ · ‖SEP(d,K) on H

(
(Cd)⊗K

)
:

∃ CK , C ′K > 0 :


P

∆∼U
(
Sd
K

‖·‖2

) (CK
2 dK/2 ≤ ‖∆‖PPT(d,K) ≤ 3CK

2 dK/2
)
≥ 1− 2e−C

2
Kd

2K/8

P
∆∼U

(
Sd
K

‖·‖2

) (C′K
2

√
d ≤ ‖∆‖SEP(d,K) ≤

3C′K
2

√
d
)
≥ 1− 2e−C

′2
Kd

K+1/8

What this result means is that, for “most” ∆ ∈ H
(
(Cd)⊗K

)
,

{
‖∆‖PPT(d,K) ' dK/2‖∆‖2 ' ‖∆‖1
‖∆‖SEP(d,K) '

√
d‖∆‖2 ' ‖∆‖2K/(K+1)

Indeed, we know from example B.8 that, for all 1 ≤ p ≤ +∞, w
(
BdK

‖·‖p

)
'
(
dK
)1/2−1/p, so that

‖ · ‖p ' w
(
BdK

‖·‖p/(p−1)

)
‖ · ‖2 '

(
dK
)1/p−1/2‖ · ‖2.

It may also be rephrased in the following way: For a fixed number K of parties and a growing
dimension d of each of these parties, the set of PPT-measurements behaves (with probability tending
to 1) roughly like the set of all measurements. On the contrary, the set of SEP-measurements is far
from reaching this same discriminating power since ‖ · ‖SEP(d,K) ' 1

d(K−1)/2 ‖ · ‖ALL(d,K).

Remark 3.10 It was established in [35] that: ∀ ∆ ∈ H
(
(Cd)⊗K

)
,

{
‖∆‖PPT(d,K) ≥ ‖∆‖2 ≥ 1

dK/2
‖∆‖1

‖∆‖SEP(d,K) ≥ 2
2K/2
‖∆‖2 ≥ 2

(2d)K/2
‖∆‖1

These lower-bounds were furthermore shown to be first order optimal, at least in their dimensional de-
pendence, since: ∃ ∆ ∈ H

(
(Cd)⊗K

)
, ∆ 6= 0 : ‖∆‖SEP(d,K) ≤ ‖∆‖PPT(d,K) ≤ 2

dK/2+1
‖∆‖1.

Nevertheless, what we have just demonstrated here is that these so-called data-hiding Hermitians on
H
(
(Cd)⊗K

)
(in the sense introduced, among others, by [39], [40] or [41]), even though they exist,

remain “exceptionnal”.

4 POVMs with “few” outcomes whose measurement norm is equiv-
alent to the one of the uniform POVM

4.1 One-partite case

Let d ∈ N∗ an denote by U := {d|ψ〉〈ψ|dψ, |ψ〉 ∈ Sd2(C)} the uniform POVM on Cd. The measurement
norm associated with U is by definition (cf section 2.1):

∀ ∆ ∈ H(Cd), ‖∆‖U :=
∫
|ψ〉∈Sd2 (C)

∣∣Tr(d|ψ〉〈ψ|∆)
∣∣dψ := dE

∣∣Tr(PU∆)
∣∣

with PU the random rank-1 projector taking value |ψ〉〈ψ| with probability dψ.

Remark 4.1 Let 1 ≤ p ≤ +∞.

For any informationally complete set of POVMs M on Cd, define:


λp(M) := inf

‖∆‖p=1
‖∆‖M

µp(M) := sup
‖∆‖p=1

‖∆‖M
.

Those are respectively the largest constant λ and smallest constant µ such that: λ‖·‖p ≤ ‖·‖M ≤ µ‖·‖p,
or equivalently such that: λBd

‖·‖p ⊂ KM ⊂ µBd
‖·‖p (cf section 2.1).

Due to the convex structure, if {Mi, i ∈ I} are informationally complete sets of POVMs on Cd, then

for any probability distribution {pi, i ∈ I}, we have:


λp

(∑
i∈I
piMi

)
≥
∑
i∈I
piλp(Mi)

µp

(∑
i∈I
piMi

)
≤
∑
i∈I
piµp(Mi)

.

And due to the unitary invariance, if M is an informationally complete set of POVMs on Cd, then
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for any unitary V on Cd, we have:

{
λp(VMV †) = λp(M)
µp(VMV †) = µp(M)

.

Consequently we get in the end that, if M is an informationally complete set of POVMs on Cd, then
for any probability distribution {dp(V ), V ∈ U(d)} on the unitaries of Cd, we have:

λp

(∫
U(d)

VMV †dp(V )

)
≥ λp(M) and µp

(∫
U(d)

VMV †dp(V )

)
≤ µp(M)

What we thus see is that, for any single informationally complete POVM M on Cd, λp(M) ≤ λp(U)
and µp(M) ≥ µp(U). To put it in more trivial terms, the uniform POVM on Cd is the “best” single
POVM on Cd, and that is why we shall take a special interest in it from now on.

The question we address in this section is: what is the minimal number of outcomes a POVM on Cd

must have in order for its measurement norm to “behave like” the one of the uniform POVM on Cd ?

Let us be more precise. Defining the “modified 2-norm” on H(Cd) as: ‖∆‖2(1) :=
√

Tr(∆2) + (Tr∆)2,
we know from [35] that the following inequalities hold:

1√
18
‖ · ‖2(1) ≤ ‖ · ‖U ≤ ‖ · ‖2(1) (3)

In light of equation 3, our question thus becomes more specifically: what is the minimal number of
outcomes a POVM on Cd should have in order for its measurement norm to be in this way dimension-
independently equivalent to the “modified 2-norm”?

4.1.1 First “rough” bound

Let n ∈ N∗ and {Pk, 1 ≤ k ≤ n} independent random rank-1 projectors with the same probability dis-

tribution as PU . Set S :=
n∑
k=1

Pk (which is a random positive operator that is almost surely invertible

for n ≥ d) and consider P := {P̃k := S−1/2PkS
−1/2, 1 ≤ k ≤ n}, random POVM on Cd made of n ran-

dom rank-1 operators, and whose associated measurement norm on H(Cd) is: ‖∆‖P =
n∑
k=1

∣∣Tr(P̃k∆)
∣∣.

• Step 1: Large deviation probability for
d

n

n∑
k=1

|Tr(Pk∆)|, ∆ ∈ Sd‖·‖2(1)

Let 0 < δ < 1 and considerMδ a δ-net for ‖ · ‖2(1) within Sd‖·‖2(1)
, the unit sphere for ‖ · ‖2(1) in H(Cd).

We may choose Mδ such that
∣∣Mδ

∣∣ ≤ (1 + 2
δ

)d2

(cf example A.13).

Let 0 < ε < 1.
For any fixed ∆ ∈ Mδ,

{∣∣Tr(Pk∆)
∣∣, 1 ≤ k ≤ n

}
are i.i.d. random variables taking values in [0; 1]

(because ∀ 1 ≤ k ≤ n, 0 ≤
∣∣Tr(Pk∆)

∣∣ ≤ ‖Pk‖2‖∆‖2 ≤ ‖Pk‖2‖∆‖2(1) = 1).
Hence, denoting by µ there common expectancy, we have by Chernoff’s inequality (corollary C.11):

P

(
1
n

n∑
k=1

∣∣Tr(Pk∆)
∣∣ /∈ [(1− ε)µ; (1 + ε)µ]

)
≤ 2e−nµε

2/4.

Yet: µ = E
∣∣Tr(PU∆)

∣∣ = 1
d‖∆‖U . So by equation 3, we get the estimate: 1√

18d
≤ µ ≤ 1

d .

Therefore: P

(
1
n

n∑
k=1

∣∣Tr(Pk∆)
∣∣ /∈ [ 1− ε√

18d
;
1 + ε

d

])
≤ 2e−nε

2/4
√

18d.

Which implies by the union bound that:
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P

(
∃ ∆ ∈Mδ :

1
n

n∑
k=1

∣∣Tr(Pk∆)
∣∣ /∈ [ 1− ε√

18d
;
1 + ε

d

])
≤
∣∣Mδ

∣∣2e−nε2/4√18d ≤ 2
(

1 +
2
δ

)d2

e−nε
2/4
√

18d

Or equivalently: P

(
∀ ∆ ∈Mδ,

d

n

n∑
k=1

∣∣Tr(Pk∆)
∣∣ ∈ [1− ε√

18
; 1 + ε

])
≥ 1− 2

(
1 +

2
δ

)d2

e−nε
2/4
√

18d.

Yet, if we have: ∀ ∆ ∈Mδ,
1− ε√

18
≤ d

n

n∑
k=1

∣∣Tr(Pk∆)
∣∣ ≤ 1 + ε, then we necessarily have:

∀ ∆ ∈ Sd‖·‖2(1)
,

1− ε√
18
− δ(1 + ε)

1− δ
≤ d

n

n∑
k=1

∣∣Tr(Pk∆)
∣∣ ≤ 1 + ε

1− δ
.

Indeed, let us denote by {|k〉, 1 ≤ k ≤ n} an orthonormal basis of Cn and suppose that the operator

T : ∆ ∈ H(Cd) 7→ d

n

n∑
k=1

Tr(Pk∆)|k〉〈k| ∈ H(Cn) satisfies: ∀ ∆̃ ∈Mδ,
1−ε√

18
≤ ‖T(∆̃)‖1 ≤ 1 + ε.

Consider first ∆0 ∈ Sd‖·‖2(1)
such that ‖T(∆0)‖1 = sup

∆∈Sd‖·‖2(1)

‖T(∆)‖1 = ‖T‖(
H(Cd),‖·‖2(1)

)
→
(
H(Cn),‖·‖1

).
By assumption: ∃ ∆̃0 ∈Mδ : ‖∆0 − ∆̃0‖2(1) ≤ δ.
So: ‖T(∆0)‖1 ≤ ‖T(∆0 − ∆̃0)‖1 + ‖T(∆̃0)‖1 ≤ ‖T(∆0)‖1δ + (1 + ε), that is: ‖T(∆0)‖1 ≤ 1+ε

1−δ .
And thus: ∀ ∆ ∈ Sd‖·‖2(1)

, ‖T(∆)‖1 ≤ ‖T(∆0)‖1 ≤ 1+ε
1−δ .

Now, consider any ∆ ∈ Sd‖·‖2(1)
. By assumption: ∃ ∆̃ ∈Mδ : ‖∆− ∆̃‖2(1) ≤ δ.

So: ‖T(∆)‖1 ≥ ‖T(∆̃)‖1 − ‖T(∆− ∆̃)‖1 ≥ 1−ε√
18
− 1+ε

1−δ δ.

Hence, we actually get as advertized: ∀ ∆ ∈ Sd‖·‖2(1)
,

1− ε√
18
− δ(1 + ε)

1− δ
≤ ‖T(∆)‖1 ≤

1 + ε

1− δ
.

Subsequently, what we eventually come to is:

P

(
∀ ∆ ∈ Sd‖·‖2(1)

,
d

n

n∑
k=1

∣∣Tr(Pk∆)
∣∣ ∈ [1− ε√

18
− δ(1 + ε)

1− δ
;

1 + ε

1− δ

])
≥ 1− 2

(
1 +

2
δ

)d2

e−nε
2/4
√

18d

Choosing for instance δ = 1
1+2
√

18
(so that δ

1−δ = 1
2
√

18
and 1

1−δ = 1 + 1
2
√

18
≤ 3

2) and ε = 1
6 , we get:

P

(
∀ ∆ ∈ Sd‖·‖2(1)

,
d

n

n∑
k=1

∣∣Tr(Pk∆)
∣∣ ∈ [ 1

4
√

18
;
7
4

])
≥ 1− 2

(
3 + 4

√
18
)d2

e−n/144
√

18d (4)

• Step 2: Large deviation probability for
n∑
k=1

|Tr(P̃k∆)|, ∆ ∈ Sd‖·‖2(1)

Let 0 < η < 1.
Since

{
Pk, 1 ≤ k ≤ n

}
are independent random variables taking values in the operator interval

[0; 1], the matrix Chernoff’s inequality (corollary C.12) yields, denoting by M ≥ µ1 there common

expectancy: P

(
1
n

n∑
k=1

Pk /∈
[
(1− η)M ; (1 + η)M

])
≤ 2de−nµη

2/4.

Yet: M = EPU =
1
d

1 =
1
d

n∑
k=1

P̃k, so that: P

(
d

n

n∑
k=1

Pk /∈

[
(1− η)

n∑
k=1

P̃k; (1 + η)
n∑
k=1

P̃k

])
≤ 2de−nη

2/4d.

Now, if

∣∣∣∣∣dn
n∑
k=1

Pk −
n∑
k=1

P̃k

∣∣∣∣∣ ≤ η1, then for any ∆ ∈ Sd‖·‖2(1)
, ‖∆‖1 ≤

√
d‖∆‖2 ≤

√
d‖∆‖2(1) =

√
d, so∣∣∣∣∣dn

n∑
k=1

∣∣Tr(Pk∆)
∣∣− n∑

k=1

∣∣Tr(P̃k∆)
∣∣∣∣∣∣∣ ≤ Tr

∣∣∣∣∣
(
d

n

n∑
k=1

Pk −
n∑
k=1

P̃k

)
∆

∣∣∣∣∣ ≤
∥∥∥∥∥dn

n∑
k=1

Pk −
n∑
k=1

P̃k

∥∥∥∥∥
∞

‖∆‖1 ≤ η
√
d
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Hence in the end:

P

(
∀ ∆ ∈ Sd‖·‖2(1)

,

∣∣∣∣∣dn
n∑
k=1

∣∣Tr(Pk∆)
∣∣− n∑

k=1

∣∣Tr(P̃k∆)
∣∣∣∣∣∣∣ ≥ √dη

)
≤ 2de−nη

2/4d (5)

Choosing for instance η = 1
8
√

18
√
d

in equation 5 (so that
[

1
4
√

18
−
√
dη; 7

4 +
√
dη
]
⊂
[

1
8
√

18
; 15

8

]
), and

combining it with equation 4, we finally get:

P

(
∀ ∆ ∈ Sd‖·‖2(1)

,
n∑
k=1

∣∣Tr(P̃k∆)
∣∣ ∈ [ 1

8
√

18
;
15
8

])
≥ 1− 2

((
3 + 4

√
18
)d2

e−n/144
√

18d + de−n/4608d2
)

• Step 3: Conclusion

By homogeneity, what we obtain in the end is:

P

(
∀ ∆ ∈ H(Cd),

1
8
√

18
‖∆‖2(1) ≤ ‖∆‖P ≤

15
8
‖∆‖2(1)

)
≥ 1−2

((
3 + 4

√
18
)d2

e−n/144
√

18d + de−n/4608d2
)

This implies that:

∀ 0 < α < 1, ∃ Cα > 0 : n ≥ Cαd3 ⇒ P

(
∀ ∆ ∈ H(Cd),

1
8
√

18
‖∆‖2(1) ≤ ‖∆‖P ≤

15
8
‖∆‖2(1)

)
≥ 1−α

The result we have come to might be formulated in the following way: a POVM on Cd obtained
from Ω(d3) appropriately renormalized randomly chosen rank-1 projectors will behave (with high
probability) as well as the uniform POVM on Cd. However, nothing in our reasoning guarantees that
this lower-bound is actually tight, the only a priori lower-bound being that a POVM on Cd has to
have at least d2 outcomes to be informationally complete...

4.1.2 Improved bound

Actually, it may be shown that, indeed, Ω(d2) randomly chosen rank-1 operators are enough to get a
POVM on Cd that emulates the uniform one. To come to this optimal result, one has to make use of
refined deviation inequalities.

• Step 1: Preliminary technical result

Let ∆ ∈ Sd‖·‖2(1)
and consider the centered random variable X := d

∣∣Tr
(
PU∆

)∣∣− ‖∆‖U .
For each p ∈ N∗, we may upper-bound its p-order moment by:

E|X|p = E

∣∣∣∣∣∣
p∑
q=0

(
p
q

)
dq
∣∣Tr
(
PU∆

)∣∣q(−1)p−q‖∆‖p−qU

∣∣∣∣∣∣ ≤
p∑
q=0

(
p
q

)
dqE
∣∣Tr
(
PU∆

)∣∣q‖∆‖p−qU

Furthermore, by Jensen’s inequality: ∀ 0 ≤ q ≤ p, E
∣∣Tr
(
PU∆

)∣∣q ≤√E
[
Tr
(
PU∆

)]2q. And:

E
[
Tr
(
PU∆

)]2q = E
[
Tr
(
P⊗2q
U ∆⊗2q

)]
=
∫
|ψ〉∈Sd2 (C) Tr

(
|ψ〉〈ψ|⊗2q∆⊗2q

)
dψ = Tr

(( ∫
|ψ〉∈Sd2 (C) |ψ〉〈ψ|

⊗2qdψ
)

∆⊗2q
)

Yet: ∀ r ∈ N,
∫
|ψ〉∈Sd2 (C) |ψ〉〈ψ|

⊗rdψ = r!
(d+r−1)×···×dPSym(d,r) = 1

(d+r−1)×···×d
∑
π∈Sr

U(π), where PSym(d,r)

denotes the orthogonal projector onto the completely symmetric subspace of (Cd)⊗r, and for each
permutation π ∈ Sr, U(π) denotes the associated permutation unitary on (Cd)⊗r.
Thus: E

[
Tr
(
PU∆

)]2q = 1
(d+2q−1)×···×d

∑
π∈S2q

Tr
(
U(π)∆⊗2q

)
.

Now: ∀ π ∈ S2q, Tr
(
U(π)∆⊗2q

)
=

c(π)∏
i=1

Tr
(

∆l(i)
)(Tr∆

)2q−s(π), where c(π) is the number of non-

trivial cycles of π, l(i), 1 ≤ i ≤ c(π), are the respective lengths of those non-trivial cycles, and
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s(π) =
c(π)∑
i=1

l(i) is the number of non-fixed points of π.

Yet if l = 2t is even:
∣∣Tr
(
∆2t
)∣∣ ≤ [Tr

(
∆2
)]t.

And if l = 2t+1 is odd:
∣∣Tr
(
∆2t+1

)∣∣ ≤ [Tr
(
∆4t
)
Tr
(
∆2
)]1/2 ≤ [Tr

(
∆2
)]t+1/2 ≤

[
Tr
(
∆2
)]t +

[
Tr
(
∆2
)]t+1

2
.

Whereas if s = 2t is even:
∣∣[Tr∆

]2q−2t∣∣ =
[
Tr∆

]2(q−t).

And if s = 2t+ 1 is odd:
∣∣[Tr∆

]2q−(2t+1)∣∣ ≤ [Tr∆
]2(q−t−1) +

[
Tr∆

]2(q−t)

2
.

Hence, recalling that ‖∆‖2q2(1) =
(
Tr
(
∆2
)

+
[
Tr∆

]2)q =
q∑
j=0

(
q
j

)[
Tr
(
∆2
)]j[Tr∆

]2(q−j), we finally get

that: ∀ π ∈ S2q,
∣∣Tr
(
U(π)∆⊗2q

)∣∣ ≤ ‖∆‖2q2(1).

So in the end:
∑

π∈S2q

Tr
(
U(π)∆⊗2q

)
≤

∑
π∈S2q

∣∣Tr
(
U(π)∆⊗2q

)∣∣ ≤ (2q)!‖∆‖2q2(1).

Thus, just noticing that (2q)!
(d+2q−1)×···×d ≤

(2q)2q

d2q , we eventually come to:

E|X|p ≤
p∑
q=0

(
p
q

)
(2q)q‖∆‖q2(1)‖∆‖

p−q
U ≤ pp

(
2‖∆‖2(1) + ‖∆‖U

)p
And since by equation 3: ‖∆‖U ≤ ‖∆‖2(1) = 1, we actually have: E|X|p ≤ (3p)p.
This implies that X is a centered ψ1 random variable (see appendix C.2 for all definitions and state-

ments concerning this matter) with ψ1-norm satisfying: ‖X‖ψ1 ≤ 2e2sup
p≥1

(
E|X|p

)1/p

p ≤ 2e2 × 3 = 6e2.

With this result in mind, let us now turn back to our initial strategy. Just as before, we first draw
{Pk, 1 ≤ k ≤ n} independently with the same probability distribution as PU , and then consider the

random POVM P := {P̃k := S−1/2PkS
−1/2, 1 ≤ k ≤ n}, where S :=

n∑
k=1

Pk.

• Step 2: Large deviation probability for
d

n

n∑
k=1

|Tr(Pk∆)|, ∆ ∈ Sd‖·‖2(1)

For a given 0 < δ < 1, we consider here again Mδ a δ-net for ‖ · ‖2(1) within Sd‖·‖2(1)
, that we choose

such that
∣∣Mδ

∣∣ ≤ (1 + 2
δ

)d2

(cf example A.13).

By what precedes, for any ∆ ∈ Mδ,
{
Xk := d

∣∣Tr
(
Pk∆

)∣∣ − ‖∆‖U , 1 ≤ k ≤ n
}

are i.i.d. centered ψ1

random variables with ψ1-norm bounded by 6e2. So by Bernstein’s inequality (theorem C.8):

∀ ε > 0, P

(∣∣∣∣∣ 1n
n∑
k=1

Xk

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
−n

4
min

(
ε2

(6e2)2
,
ε

6e2

))
And whenever ε ≤ 6e2, we have: min

(
ε2

(6e2)2 ,
ε

6e2

)
= ε2

(6e2)2 .

Hence, reasoning exactly as in section 4.1.1, what we come to is that, for all 0 < ε < 1:

First: P

(
∀ ∆ ∈Mδ,

d

n

n∑
k=1

∣∣Tr(Pk∆)
∣∣ ∈ [1− ε√

18
; 1 + ε

])
≥ 1− 2

(
1 +

2
δ

)d2

e−nε
2/144e4 .

Then: P

(
∀ ∆ ∈ Sd‖·‖2(1)

,
d

n

n∑
k=1

∣∣Tr(Pk∆)
∣∣ ∈ [1− ε√

18
− δ(1 + ε)

1− δ
;

1 + ε

1− δ

])
≥ 1− 2

(
1 +

2
δ

)d2

e−nε
2/144e4

Choosing, again just as in section 4.1.1, δ = 1
1+2
√

18
and ε = 1

6 , we thus get:

P

(
∀ ∆ ∈ Sd‖·‖2(1)

,
d

n

n∑
k=1

∣∣Tr(Pk∆)
∣∣ ∈ [ 1

4
√

18
;
7
4

])
≥ 1− 2

(
5
√

18
)d2

e−n/36×144e4 (6)
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• Step 3: Large deviation probability for
n∑
k=1

|Tr(P̃k∆)|, ∆ ∈ Sd‖·‖2(1)

In order to conclude, we must at last bound P

(∥∥∥∥ dn n∑
k=1

Pk −
n∑
k=1

P̃k

∥∥∥∥
∞
≥ η

)
for any fixed η > 0.

Yet: ‖ · ‖∞ = ‖ · ‖(Cd,‖·‖2)→(Cd,‖·‖2), so: ∀ M ∈ H(Cd), ‖M‖∞ = sup
x∈Sd2 (C)

‖Mx‖2 = sup
x∈Sd2 (C)

|〈x|M |x〉|.

Besides, considering N a 1
3 -net for ‖ ·‖2 within Sd2(C), we have: ∀ x ∈ Sd2(C), ∃ x̃ ∈ N : ‖x− x̃‖2 ≤ 1

3 ,
so that: |〈x|M |x〉| ≤|〈x|M |x− x̃〉|+ |〈x− x̃|M |x̃〉|+ |〈x̃|M |x̃〉|

≤‖x− x̃‖2‖Mx‖2 + ‖x− x̃‖2‖Mx̃‖2 + |〈x̃|M |x̃〉|

≤1
3
‖M‖∞ +

4
3

sup
y∈N
|〈y|M |y〉|

Thus in the end: ‖M‖∞ ≤ 2sup
y∈N
|〈y|M |y〉|, which implies by the union bound that:

∀ η > 0, P(‖M‖∞ ≥ η) ≤ |N | sup
y∈N

P
(
|〈y|M |y〉| ≥ η

2

)
Now, let y ∈ N and consider the random variable Y := 〈y|dPU − 1|y〉 = d〈y|PU |y〉 − 1.
It is centered (because E(y|PU |y) = 1

d), and following the exact same lines as above, we might upper-
bound its p-order moment, p ∈ N∗, by: E|Y |p ≤ pp(2‖|y〉〈y|‖2(1) + 1)p = pp(2

√
2 + 1)p ≤ (4p)p.

This implies that Y is a centered ψ1 random variable with ψ1-norm satisfying: ‖Y ‖ψ1 ≤ 8e2.

Hence, for any y ∈ N , {Yk := 〈y|dPk − 1|y〉, 1 ≤ k ≤ n} are i.i.d. centered ψ1 random variables with
ψ1-norm bounded by 8e2. So by Bernstein’s inequality (theorem C.8):

∀ 0 < η < 8e2, P

(∣∣∣∣∣〈y∣∣∣ 1n
n∑
k=1

(dPk − 1)
∣∣∣y〉∣∣∣∣∣ ≥ η

)
= P

(∣∣∣∣∣ 1n
n∑
k=1

Yk

∣∣∣∣∣ ≥ η
)
≤ 2 exp

(
−n

4
η2

(8e2)2

)
Consequently, since we may choose N such that |N | ≤ 72d (cf example A.13), we get:

∀ 0 < η < 1, P

(∥∥∥∥∥dn
n∑
k=1

Pk −
n∑
k=1

P̃k

∥∥∥∥∥
∞

≥ η

)
= P

(∥∥∥∥∥ 1
n

n∑
k=1

(dPk − 1)

∥∥∥∥∥
∞

≥ η

)
≤ 2× 49de−nη

2/1024e4

(7)

Choosing, once more as in section 4.1.1, η = 1
8
√

18
√
d

in equation 7 and combining it with equation 6,
what we eventually come to is:

P

(
∀ ∆ ∈ Sd‖·‖2(1)

,

n∑
k=1

∣∣Tr(P̃k∆)
∣∣ ∈ [ 1

8
√

18
;
15
8

])
≥ 1−2

((
5
√

18
)d2

e−n/36×144e4 + 49de−n/1152×1024e4d
)

• Step 4: Conclusion

By homogeneity, what we obtain in the end is:

P

(
∀ ∆ ∈ H(Cd),

1
8
√

18
‖∆‖2(1) ≤ ‖∆‖P ≤

15
8
‖∆‖2(1)

)
≥ 1−2

((
5
√

18
)d2

e−n/36×144e4 + 49de−n/1152×1024e4d
)

This straightforwardly implies the advertized improvement:

∀ 0 < α < 1, ∃ Cα > 0 : n ≥ Cαd2 ⇒ P

(
∀ ∆ ∈ H(Cd),

1
8
√

18
‖∆‖2(1) ≤ ‖∆‖P ≤

15
8
‖∆‖2(1)

)
≥ 1−α

4.2 Multi-partite case

Actually, the preceding result can be quite directly generalized to the multi-partite setting.
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Let H ≡ Cd1 ⊗ · · · ⊗ CdK and consider U = U1 ⊗ · · · ⊗ UK the so-called local uniform POVM on H,
which is the tensor product of the uniform POVMs Ui on Cdi , 1 ≤ i ≤ K.

We define the “modified K-partite 2-norm” on H(H) as: ‖∆‖2(K) :=
√ ∑
I⊂{1,...,K}

TrH\HI
[(

TrHI∆
)2],

where H{i1,...,ip} := C
di1 ⊗ · · · ⊗ Cdip .

We then know from [35] that the dimension-independent norm equivalence below holds:

1
√

18
K
‖ · ‖2(K) ≤ ‖ · ‖U ≤ ‖ · ‖2(K) (8)

What is more, we might show as in the one-partite case that:
∀ q ∈ N, ∀ π1, . . . , πK ∈ S2q,

∣∣Tr
(
U(π1)⊗ · · · ⊗ U(πK)∆⊗2q

)∣∣ ≤ ‖∆‖2q2(K)
Hence, denoting by D := d1 × · · · × dK the dimension of H, we have for all q ∈ N:

E
[
Tr
(
PU∆

)]2q =

∑
π1,...,πK∈S2q

Tr
(
K⊗
i=1
U(πi)∆⊗2q

)
K∏
i=1

(di + 2q − 1)× · · · × di
≤
[
(2q)!

]K
K∏
i=1
d2q
i

‖∆‖2q2(K) ≤
(

(2q)K

D
‖∆‖2(K)

)2q

(see appendix E for a complete proof and additional comments on that matter)

Analogously to the one-partite case, this implies that:

• For any ∆ ∈ SD‖·‖2(K)
, X := D

∣∣Tr
(
PU∆

)∣∣−‖∆‖U is a centered ψ1 random variable with ψ1-norm

satisfying ‖X‖ψ1 ≤ 2e2 × (2K + 1).

• For any y ∈ SD2 (C), Y := D〈y|PU |y〉−1 is a centered ψ1 random variable with ψ1-norm satisfying
‖Y ‖ψ1 ≤ 2e2 × (2K

√
2 + 1).

Thus, following step by step the exact same lines as in section 4.1.2, we may, for each 1 ≤ i ≤ K, draw
{P (i)

k , 1 ≤ k ≤ n}, independent random rank-1 projectors with the same probability distribution as

PUi , then set Si :=
n∑
k=1

P
(i)
k and at last P̃ (i)

k := S
−1/2
i P

(i)
k S

−1/2
i , 1 ≤ k ≤ n. The POVM we next look

at is P := {P̃ (1)
k ⊗ · · · ⊗ P̃ (K)

k , 1 ≤ k ≤ n}, random POVM on H made of n random rank-1 operators.
And the final result we eventually come to is:

P

(
∀ ∆ ∈ H(CD),

1

8
√

18
K
‖∆‖2(K) ≤ ‖∆‖P ≤

15
8
‖∆‖2(K)

)
≥ 1−2

((
5
√

18
K)D2

e
− n

9K576e4 + 49De−
n

288K4096e4D

)
Which leads to a similar statement as in the one-partite case:

∀ 0 < α < 1, ∃ Cα > 0 : n ≥ CαD2 ⇒ P

(
∀ ∆ ∈ H(CD),

1

8
√

18
K
‖∆‖2(K) ≤ ‖∆‖P ≤

15
8
‖∆‖2(K)

)
≥ 1−α

Remark 4.2 As drawn to attention by remark 4.1, the tensor product of the uniform POVMs on
Cd1 , . . . ,CdK is the local POVM with the “best” discriminating power on Cd1 ⊗ · · ·⊗CdK . That is why
it is of practical interest to have at hand an “almost as efficient” POVM that is “easily implementable”
(which is the case when it may be constructed by picking up “few” projectors “at random”).
A t-design POVM M on Cd is by definition a POVM on Cd which behaves “up to a certain extent
quantified by t” as the uniform one: M := (dpxPx)x∈X with (px)x∈X a probability distribution and
(Px)x∈X rank-1 projectors on Cd such that

∑
x∈X

pxP
⊗t
x =

∫
|ψ〉∈Sd2 (C) |ψ〉〈ψ|

⊗tdψ = 1
d×···×(d+t−1)

∑
σ∈St

U(σ).

The uniform POVM is thus an ∞-design POVM. The reader is referred, for instance, to [36] or [37]
for much more on that extensively studied theory (both “classically” and “quantumly”).
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It was shown in [35] that it is actually sufficient for a local POVM M on Cd1 ⊗ · · · ⊗ CdK to be a
tensor product of 4-design POVMs on Cd1 , . . . ,CdK so that the norm equivalence from equation 8 hold:

1√
18
K ‖ · ‖2(K) ≤ ‖ · ‖M ≤ ‖ · ‖2(K). This result found diverse applications. It was notably used in

[45] to describe an algorithm that would decide in a quasipolynomial time whether a bi-partite state is
separable or whether it is “far away” from the set of separable states. It was also used in [42] to put
bounds on the possibility of “compressing” quantum states into smaller dimension ones.
Now, there are two main problems that one might encounter following this exact and deterministic
approach: firstly, a 4-design POVM on Cd must have at least Ω(d4) outcomes, and secondly, no explicit
constructions of such POVMs are known. Hence enlightened perhaps’ the benefit of the approximate
and probabilistic point of view adopted here.

5 Sets of POVMs with minimal cardinality whose measurement
norm approximates the one of the set of all POVMs

The issue we focus on in this section is the one of determining how many distinct POVMs a set M
of POVMs on Cd must contain in order for its measurement norm to approximate the one of the set
ALL of all POVMs on Cd (in the sense that: ∃ 0 < λ < 1 : λ‖ · ‖ALL ≤ ‖ · ‖M ≤ ‖ · ‖ALL).
In return, we will wonder if it is possible to exhibit sets of POVMs on Cd containing this minimal
number of distinct POVMs and whose measurement norm approximates the one of the set of all
POVMs on Cd.

Before getting at the heart of our problem, let us introduce a few general notions we will later need.

Let d ∈ N∗. For all 0 ≤ k ≤ d, we denote by Gd,k the so-called Grassmannian of dimension-k subspaces
of Cd (over C). It is a manifold of dimension k(d− k) over C, and 2k(d− k) over R.
For all 1 ≤ p ≤ +∞,

⊔
0≤k≤d

Gd,k may be equipped with the metric dp defined by:

∀ E,F ∈
⊔

0≤k≤d
Gd,k, dp(E,F ) := ‖PE − PF ‖p, where PE and PF are the orthogonal projectors onto

E and F respectively.
Each

(
Gd,k, dp

)
, 0 ≤ k ≤ d, 1 ≤ p ≤ +∞, is then a compact manifold of diameter:

Dp(Gd,k) := sup
E,F∈Gd,k

dp(E,F ) =

{(
2k
)1/p if k ≤ d

2(
2(d− k)

)1/p if k ≥ d
2

Let 0 ≤ k ≤ d
2 , 1 ≤ p ≤ +∞ and 0 < ε < (2k)1/p. Denote by N(Gd,k, dp, ε) the minimal cardinality

of an ε-net and by K(Gd,k, dp, ε) the maximal cardinality of an ε-separated set for dp within Gd,k (see
appendix A.4 for precise definitons). We have the important following fact (proved in [21]):
There exist universal constants 0 < c < c′ (independent of d, k, p and ε) such that:(

c
(2k)1/p

ε

)2k(d−k)

≤ N(Gd,k, dp, ε) ≤ K(Gd,k, dp, ε) ≤

(
c′

(2k)1/p

ε

)2k(d−k)

(9)

5.1 Set of 2-outcome projective POVMs

Considering d + 1 instead of d if need be, we might assume without loss of generality that d is even,
and look first at Gd,d/2 the Grassmannian of dimension-d/2 subspaces of Cd (over C). Applying the
general result provided by equation 9 to this special case yields:

∀ 1 ≤ p ≤ +∞, ∀ 0 < ε < d1/p,

(
c
d1/p

ε

)d2/2

≤ N(Gd,d/2, dp, ε) ≤ K(Gd,d/2, dp, ε) ≤

(
c′
d1/p

ε

)d2/2

Let {Eα, α ∈ A} ⊂ Gd,d/2 be a set of |A| dimension-d/2 subspaces of Cd.
We consider M :=

{
Pα :=

(
PEα , PE⊥α

)
, α ∈ A

}
, set of |A| 2-outcome POVMs on Cd whose operators
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are rank-d/2 projectors, and we assume that it is such that:

∃ 0 < λ < 1 : ∀ ∆ ∈ H(Cd), ‖∆‖M ≥ λ‖∆‖ALL = λ‖∆‖1

Let 0 < ε <
√
d and denote by Mε := {Fβ, β ∈ B} a maximal ε-separated set for d2 within Gd,d/2.

By assumption on M, we have in particular: ∀ β ∈ B, ‖∆Fβ‖M ≥ λ‖∆Fβ‖1, where ∆Fβ := PFβ−PF⊥β ,
that is: ∀ β ∈ B, ∃ α ∈ A : ‖∆Fβ‖Pα ≥ λ‖∆Fβ‖1.
Yet, on the one hand: ‖∆Fβ‖1 = Tr

∣∣PFβ − PF⊥β ∣∣ = d.

And on the other: ‖∆Fβ‖Pα =
∣∣Tr
[(
PFβ−PF⊥β

)
PEα

]∣∣+∣∣Tr
[(
PFβ−PF⊥β

)
PE⊥α

]∣∣ = 2
∣∣Tr
[
PEα

(
1−2PFβ

)]∣∣.
Now:

[
d2(Eα, Fβ)

]2 = ‖PEα −PFβ‖22 = Tr
(
P 2
Eα

)
+ Tr

(
P 2
Fβ

)− 2Tr
(
PEαPFβ

)
= Tr

[
PEα

(
1− 2PFβ

)]
+ d

2 .

So: ‖∆Fβ‖Pα = 2
∣∣∣d2 − [d2(Eα, Fβ)

]2∣∣∣.
And since

[
d2(E⊥α , Fβ)

]2 = d−
[
d2(Eα, Fβ)

]2, we actually have: ‖∆Fβ‖Pα =

2
(
d
2 −

[
d2(Eα, Fβ)

]2)
2
(
d
2 −

[
d2(E⊥α , Fβ)

]2) ,

depending on which one of those two quantities is positive and which one is negative.

We must therefore have, either d2(Eα, Fβ) ≤
√

1−λ
2 d, or d2(E⊥α , Fβ) ≤

√
1−λ

2 d.

But by ε-separation of Mε, a ball of radius ε
2 for d2 centered at some given point of Gd,d/2 contains

at most one point of Mε. Hence, choosing ε =
√

2(1− λ)d, we get by what precedes that, for each
α ∈ A, there exist at most two β ∈ B such that ‖∆Fβ‖Pα ≥ λ‖∆Fβ‖1 (because the ball of radius√

1−λ
2 d for d2 centered at Eα contains at most one point of M√

2(1−λ)d
, and similarly for E⊥α ).

This is enligthened perhaps’ by figure 5 below.

Consequently, we must have: |A| × 2 ≥
∣∣∣M√

2(1−λ)d

∣∣∣.
Now, by maximality ofM√

2(1−λ)d
, equation 9 implies:

∣∣∣M√
2(1−λ)d

∣∣∣ ≥ (c √
d√

2(1−λ)d

)d2/2

=
(

c√
2(1−λ)

)d2/2

.

So in the end, we get the following lower-bound on the cardinality of the considered set of POVMs:

|A| ≥ 1
2

(
c√

2(1−λ)

)d2/2

.

Figure 5: (Fβ)β∈B a
√

2(1− λ)d-separated set for d2 within Gd,d/2: for any Ẽ ∈ Gd,d/2, there exists

at most one β ∈ B such that d2(Ẽ, Fβ) ≤
√

1−λ
2 d

26



Conversely, let us consider as set of 2-outcome POVMs on Cd M :=
{

Pα :=
(
PEα , PE⊥α

)
, α ∈ A

}
where M√

2(1−λ)d
:= {Eα, α ∈ A} is a minimal

√
2(1− λ)d-net for d2 within Gd,d/2.

By minimality of M√
2(1−λ)d

, we have by equation 9: |A| ≤
(
c′

√
d√

2(1−λ)d

)d2/2

=
(

c′√
2(1−λ)

)d2/2

.

And by
√

2(1− λ)d-covering ofM√
2(1−λ)d

: ∀ F ∈ Gd,d/2, ∃ α ∈ A : d2(F,Eα) ≤
√

2(1− λ)d, which

implies, following the exact same lines as above backwards, that: ‖∆F ‖Pα ≥ λ‖∆Fβ‖1, and thus that:
‖∆F ‖M ≥ λ‖∆F ‖1.

Hence, to sum things up, there are basically two things that we have shown at that point:

• If M is a set of POVMs on Cd which is composed of 2-outcome POVMs of the form (PE , PE⊥)

with E ∈ Gd,d/2, it must have at least
(

C√
1−λ

)d2/2
elements in order to be such that ∀ F ∈

Gd,d/2, ‖PF − PF⊥‖M ≥ λ‖PF − PF⊥‖1.

• There exists a set M of POVMs on Cd which is composed of 2-outcome POVMs of the form

(PE , PE⊥) with E ∈ Gd,d/2, which has less than
(

C′√
1−λ

)d2/2
elements, and which is such that

∀ F ∈ Gd,d/2, ‖PF − PF⊥‖M ≥ λ‖PF − PF⊥‖1.

And this result may in fact be generalized to subspaces of Cd of any dimension.
Let indeed 1 ≤ k ≤ d

2 . For all E,F ∈ Gd,k, we have:
‖PF − PF⊥‖(PE ,PE⊥ ) =

∣∣Tr
[
PE
(
1− 2PF

)]∣∣+
∣∣Tr
[
PE
(
1− 2PF

)]
+ d− 2k

∣∣
=
∣∣[d2(E,F )

]2 − k∣∣+
∣∣[d2(E,F )

]2 + d− 3k
∣∣

Now, there exists Ẽ⊥ a k-dimensional subspace of E⊥ such that
[
d2(Ẽ⊥, F )

]2 = 2k −
[
d2(E,F )

]2.

So what we eventually come to is: ‖PF −PF⊥‖(PE ,PE⊥ ) =

2
(

(d− k)−
[
d2(E,F )

]2)
2
(

(d− k)−
[
d2(Ẽ⊥, F )

]2) , depending

on which one of those two quantities is positive and which one is negative.

Hence: ‖PF − PF⊥‖(PE ,PE⊥ ) ≥ λ‖PF − PF⊥‖1 ⇔


d2(E,F ) ≤

√
(d− k)− λd2

or

d2(Ẽ⊥, F ) ≤
√

(d− k)− λd2
Consequently, considering, similarly to what was done in the particular case k = d

2 above, either a

maximal
√

2
(
2(d− k)− λd

)
-separated set or a minimal

√
2
(
2(d− k)− λd

)
-net for d2 within Gd,k, we

get the following result:

• If Mk is a set of POVMs on Cd which is composed of 2-outcome POVMs of the form (PE , PE⊥)

with E ∈ Gd,k, it must have at least

(
C√

d−k
k
−λ d/2

k

)2k(d−k)

elements in order to be such that

∀ F ∈ Gd,k, ‖PF − PF⊥‖M ≥ λ‖PF − PF⊥‖1.

• There exists a set Mk of POVMs on Cd which is composed of 2-outcome POVMs of the form

(PE , PE⊥) with E ∈ Gd,k, which has less than

(
C′√

d−k
k
−λ d/2

k

)2k(d−k)

elements, and which is such

that ∀ F ∈ Gd,k, ‖PF − PF⊥‖Mk
≥ λ‖PF − PF⊥‖1.

As a consequence, M :=
⊔

1≤k≤ d
2

Mk is a set of POVMs on Cd which is composed of 2-outcome POVMs

of the form (PE , PE⊥) with E subspace of Cd, and which is such that:
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On the one hand, |M| ≤
∑

1≤k≤ d
2

(
C′√

d−k
k
−λ d/2

k

)2k(d−k)

≤ d
2

(
C′√
1−λ

)d2/2
≤
(

C√
1−λ

)d2/2
.

And on the other, for any subspace F of Cd, ‖PF − PF⊥‖M ≥ λ‖PF − PF⊥‖1.

5.2 Set of general POVMs

We now consider M :=
{
Mα :=

(
M

(α)
iα

)
iα∈Iα

, α ∈ A
}

a set of |A| general POVMs on Cd, and we

assume, just as was done in section 5.1, that it is such that:

∃ 0 < λ < 1 : ∀ ∆ ∈ H(Cd), ‖∆‖M ≥ λ‖∆‖ALL = λ‖∆‖1

First of all, let us notice that for any 0 ≤M ≤ 1 and any E ∈ Gd,d/2, defining the traceless Hermitian
∆E := PE − PE⊥ = 1− 2PE , we have:

‖∆E‖(M,1−M) = |Tr [∆EM ]| + |Tr [∆E(1−M)]| =

{
2Tr [(1− 2PE)M ]
2Tr [(1− 2PE)(1−M)]

, depending on which

one of these two quantities is positive and which one is negative.
Now: ‖PE−M‖22 = Tr

(
P 2
E

)
+Tr

(
M2
)
−2Tr

(
PEM

)
≤ TrPE+TrM−2Tr

(
PEM

)
= d

2 +Tr [(1− 2PE)M ].
And similarly: ‖PE − (1−M)‖22 ≤ d

2 + Tr [(1− 2PE)(1−M)].

Consequently, either ‖PE−M‖2 ≤
√

d
2 −

1
2‖∆E‖(M,1−M) or ‖PE−(1−M)‖2 ≤

√
d
2 −

1
2‖∆E‖(M,1−M).

With this preliminary result in mind, let us turn back to our initial concern.

Consider M√
8(1−λ)d

:= {Eβ, β ∈ B} a maximal
√

8(1− λ)d-separated set for d2 within Gd,d/2.
By assumption on M, we have in particular:
∀ β ∈ B, ∃ α ∈ A, ∃ Jα ⊂ Iα : ‖∆Eβ‖(M(α)

Jα
,1−M(α)

Jα

) ≥ λ‖∆Eβ‖1, where M (α)
Jα

:=
∑
α∈Jα

M
(α)
iα

.

As pointed out above, since ‖∆Eβ‖1 = d, this implies that either
∥∥∥PEβ −M (α)

Jα

∥∥∥
2
≤
√

1−λ
2 d or∥∥∥PEβ − (1−M (α)

Jα

)∥∥∥
2
≤
√

1−λ
2 d.

But by
√

8(1− λ)d-separation of M√
8(1−λ)d

, the ball of radius
√

1−λ
2 d for ‖ · ‖2 centered at M (α)

Jα
or

at 1−M (α)
Jα

contains at most one point ofM√
8(1−λ)d

. Hence, for each α ∈ A and each Jα ⊂ Iα, there

exist at most 2 β ∈ B such that ‖∆Eβ‖(M(α)
Jα

,1−M(α)
Jα

) ≥ λ‖∆Eβ‖1.

Now, consider one given POVM M = (Mi)i∈I on Cd and assume that it such that:
∃ I ′ ⊂ I, |I ′| = n : ∀ J ⊂ I ′, ∃ β ∈ B : ‖∆Eβ‖(MJ ,1−MJ ) ≥ λ‖∆Eβ‖1
By what precedes, this implies that the 2n distinct MJ , J ⊂ I ′, are each

√
1−λ

2 d-close of a given PEβ .

And since those are
√

8(1− λ)d-separated, this entails in turn that the 2n distinct MJ , J ⊂ I ′, are√
2(1− λ)d-separated.

Subsequently, the symmetric convex body KM ′ := Conv{2MJ − 1, J ⊂ I ′} ⊂ H(Cd) is such that
KM ′ = Conv(T ) with |T | = 2n and ∀ X,Y ∈ T, ‖X − Y ‖2 ≥

√
2(1− λ)d.

Therefore, by theorem B.4: w(KM ′) &
√

2(1− λ)d
√

n
d2 =

√
2(1− λ)

√
n
d .

Yet, it also holds that: w(KM ′) . 1 (cf remark 2.4). Hence necessarily: n . d.

What we have thus shown is that, for each α ∈ A, there exist at most Cd β ∈ B such that
‖∆Eβ‖Mα ≥ λ‖∆Eβ‖1.

As a consequence, we must have: |A| × Cd ≥
∣∣∣M√

8(1−λ)d

∣∣∣.
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Now, by maximality ofM√
8(1−λ)d

, equation 9 implies:
∣∣∣M√

2(1−λ)d

∣∣∣ ≥ (c √
d√

8(1−λ)d

)d2/2

=
(

c√
8(1−λ)

)d2/2

.

So in the end, we get the following lower-bound on the cardinality of the considered set of POVMs:

|A| ≥ 1
Cd

(
c√

8(1− λ)

)d2/2

≥
(

c̃√
1− λ

)d2/2

.

Let us summarize: a set of POVMs on Cd whose associated measurement norm would be, on any
Hermitian, at least, say, half the one associated with the set of all POVMs on Cd has to be composed
of at least Cd

2
distinct POVMs (and this whatever the number and the type of the operators composing

each POVM).

Remark 5.1 It is in fact possible to come to a quite similar result from a rather different (and when
all is said and done, probably more straightforward) approach.

Let us denote by HU(Cd) the set of Hermitian unitaries on Cd. It should be noted that:

U ∈ HU(Cd) ⇔ U =
1
2

(1 + P ) with P an orthogonal projector on C
d

HU(Cd) may thus be identified with
⊔

0≤k≤d
Gd,k. This implies that for all 1 ≤ p ≤ +∞ and 0 < ε < 21/p,

one can take as ε-net (or as ε-separated set) for ‖·‖p within HU(Cd):
⊔

1≤k≤d−1

{
1
2(1 + PE), E ∈Mε(k)

}
,

where for each 1 ≤ k ≤ d− 1, Mε(k) is an ε-net (or an ε-separated set) for dp within Gd,k.
Therefore, by equation 9, it holds regarding the entropy numbers of HU(Cd) that:
There exist universal constants 0 < c < c′ (independent of d, k, p and ε) such that:

2
d/2∑
k=1

(
c
(2k)1/p

ε

)2k(d−k)

≤ N(HU(Cd), ‖ · ‖p, ε) ≤ K(HU(Cd), ‖ · ‖p, ε) ≤ 2
d/2∑
k=1

(
c′

(2k)1/p

ε

)2k(d−k)

Hence, there actually exist universal constants 0 < c < c′ (independent of d, p and ε) such that:(
c
d1/p

ε

)d2/2

≤ N(HU(Cd), ‖ · ‖p, ε) ≤ K(HU(Cd), ‖ · ‖p, ε) ≤

(
c′
d1/p

ε

)d2/2

(10)

With this point in mind, we assume as before that we have a set M := {Mα, α ∈ A} of |A| POVMs

on Cd which is such that: λKALL ⊂ KM, i.e. λBd
‖·‖∞ ⊂ Conv

( ⋃
α∈A

KMα

)
, for some 0 < λ < 1.

We next fix ε > 0 and consider Mε := {Uβ, β ∈ B} a maximal ε-separated set for ‖ · ‖2 within

HU(Cd). By maximality of Mε equation 10 entails that: |B| ≥
(
c
√
d
ε

)d2/2
.

What is more, by assumption on M: λMε ⊂ λBd
‖·‖∞ ⊂ KM.

And by extremality of the unitaries in Bd
‖·‖∞, this in fact implies that: λMε ⊂

⋃
α∈A

KMα.

Now, let α ∈ A and suppose that there exist nα distinct β ∈ B such that λUβ ∈ KMα.
By ε-separation of Mε: ∀ β 6= β′ ∈ B, ‖λUβ−λUβ′‖2 ≥ λε. So by theorem B.4: w(KMα) & λε

√
lognα
d .

Since it also stands by remark 2.4 that: w(KMα) . 1, it follows that: nα ≤ Cd
2/λ2ε2.

Choosing ε =
√

d
λ , what we come to in the end is that, on the one hand: |B| ≥

(
c
√
λ
)d2/2

, and on

the other: for each α ∈ A, there are at most Cd distinct β ∈ B such that λUβ ∈ KMα.

Hence necessarily: |A| ≥

(
c
√
λ
)d2/2

Cd
≥
(
c̃
√
λ
)d2/2

.
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6 Conclusion and open questions

What spurred us into the investigation carried on in section 3 was the will to get quantitative estimates
on the discriminating power of some classes of locally restricted measurements on “large” composite
systems. The results we obtained, namely that, on (Cd)⊗K , w(KPPT) ' dK/2 and w(KSEP) ' d1/2,
are valid for a fixed K and d → +∞, i.e. for a “small” number of “large” subsystems. Now, the
opposite setting in which the local dimension d is fixed and the number of local parties K → +∞
might be equally naturally considered: it corresponds to the situation of a “large” number of “small”
subsystems. It is a weakness of our approach that it only allows us to deal with one of the two
“regular” high-dimensional multi-partite systems one could think of.
Besides, the reformulation we get in terms of the “typical” value of ‖ · ‖PPT and ‖ · ‖SEP states that
for ∆ ∼ U

(
Sd

K

‖·‖2

)
, ‖∆‖PPT ' dK/2 and ‖∆‖SEP '

√
d with high probability. However, the initial

motivation for taking a closer look at those measurement norms was the discrimination task described
in section 2.2. Our results should therefore be translated now into statements on the “typical” value
of the biases

∥∥1
2ρ−

1
2σ
∥∥
PPT

and
∥∥1

2ρ−
1
2σ
∥∥
SEP

for “random” states ρ and σ (see appendix D.2 for
more details on how to define rigorously what a “random” state could be).

In section 4.1, it was shown that the uniform POVM on Cd could be emulated by drawing Ω(d2)
uniformly distributed rank-1 projectors. From there, one could then legitimately ask the following
question: given a rank-1 POVM which already approximates the uniform POVM, how many rank-1
projectors should be sampled from the corresponding probability distribution in order, once again, to
emulate the uniform POVM? One would expect that Ω(d2) rank-1 projectors would not be enough
anymore in that case, but perhaps’ Ω(d2(log d)α) or Ω(d2+ε)... The reason why this wonder could be
relevant is that POVMs with a finite number of outcomes are known to “behave almost as well as”
the uniform POVM, for instance 4-design POVMs (the reader is referred to [38] for definitions and
one-partite results, to [34] and [35] for multi-partite generalizations).
Regarding now section 4.2 and the approximation of the local uniform POVM in the multi-partite case,
there is something else that might be worth pointing at: the random approximating POVM which is
constructed there is a separable POVM but not a local POVM (in the sense defined in section 3.1).
Indeed, on Cd1 ⊗ · · ·⊗CdK ≡ CD, it is of the form PSEP = {P̃ (1)

k ⊗ · · ·⊗ P̃
(K)
k , 1 ≤ k ≤ CD2} and not

of the form PLO = {P̃ (1)
k1
⊗ · · · ⊗ P̃ (K)

kK
, 1 ≤ ki ≤ Cd2

i , 1 ≤ i ≤ K}. Both types of POVMs are made of
Ω(D2) random operators, but the problem in the latter case is that those random operators are not
independent anymore, which forbids an application of the “usual” large deviation estimates without
change...

As for the approximation of the set of all POVMs on Cd, it was proved in section 5 that it requires
Cd

2
POVMs. One could then naturally wonder how many POVMs would be needed to approximate

many other sets of POVMs (for instance the sets of local, separable or positive under partial transpose
POVMs on (Cd)⊗K).
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Appendices

A Convex geometry and functional analysis

A.1 Duality between norms and convex bodies

The reader is referred, for instance, to [6] or [10] for a complete exposition of all the basic convex
geometry notions presented succinctly in this section.

Let (H, ‖ · ‖) be a real Hilbert space (with the norm ‖ · ‖ deriving from an inner product 〈·|·〉 on H).
For any norm η on H and any r > 0 we will denote by Bη(r) := {x ∈ H, η(x) ≤ r} the closed ball of
radius r (centered at the origin) for η. When r = 1, we will generally omit it and write Bη := Bη(1)
to denote the closed unit ball (centered at the origin) for η.

Proposition A.1 Let K be a symmetric convex body of H with non-empty interior.

Define its gauge or Minkowski functional gK : x ∈ H 7→ inf {t > 0, x ∈ tK} = inf
{
t > 0,

1
t
x ∈ K

}
.

Then gK is a norm on H that is such that BgK = K.

Proof : The subadditivity of gK is guaranteed by the convexity of K and its homogeneity is guaranteed
by the symmetry of K. Due to the fact that K is compact, gK is additionally positive definite.

Proposition A.2 Conversely, for any norm η on H and any r > 0, Bη(r) is a symmetric convex
body of H with non-empty interior, and gBη = η.

Definition/Proposition A.3 For all K ⊂ H we define its polar as K◦ := {x ∈ H, ∀ y ∈ K, |〈y|x〉| ≤ 1}.
If K is a symmetric convex body of H, then so is K◦, and (K◦)◦ = K.
And in such case, the following duality formulas stand:

∀ x ∈ H, gK(x) = sup
y∈K◦

|〈y|x〉| and gK◦(x) = sup
y∈K
|〈y|x〉|

Let n ∈ N∗. We define the inner-product 〈·|·〉 on Rn by:

∀ x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, 〈x|y〉 :=
∑

1≤i≤n
xiyi

We more generally define, for all 1 ≤ p ≤ +∞, the p-norm ‖ · ‖p on Rn (with associated unit ball later
denoted by Bn

p ) as:

∀ x = (x1, . . . , xn) ∈ Rn, ‖x‖p :=

 ∑
1≤i≤n

|xi|p
1/p

, 1 ≤ p < +∞, and ‖x‖∞ := max
1≤i≤n

|xi|

In the so-called classical or commutative space
(
Rn, 〈·|·〉), the following duality holds:

∀ 1 ≤ p, p′ ≤ +∞, 1
p

+
1
p′

= 1,
(
Bn
p

)◦ = Bn
p′ (11)

Let d ∈ N∗. We define the Hilbert-Schmidt inner-product 〈·|·〉 on the space of complex Hermitian
d× d matrices H(Cd) ≡ Rd

2
by:

∀ M,N ∈ H(Cd), 〈M |N〉 := Tr(MN)
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We more generally define, for all 1 ≤ p ≤ +∞, the Schatten p-norm ‖ · ‖p on H(Cd) (with associated
unit ball later denoted by Bd

‖·‖p) as:

∀ M ∈ H(Cd), ‖M‖p := (Tr|M |p)1/p , 1 ≤ p < +∞, and ‖M‖∞ := ‖|M‖|

Denoting, for each M ∈ H(Cd), by λ(M) = (λ1(M), . . . , λd(M)) ∈ Rd the real-valued d-tuple of
eigenvalues of M , we have: ∀ 1 ≤ p ≤ +∞, ‖M‖p = ‖λ(M)‖p.
In the so-called quantum or non-commutative space

(
H(Cd), 〈·|·〉

)
, the following duality holds:

∀ 1 ≤ p, p′ ≤ +∞, 1
p

+
1
p′

= 1,
(
Bd
‖·‖p

)◦
= Bd

‖·‖p′
(12)

A.2 “Classic” geometric inequalities involving volumes

In this section are exposed the most basic inequalities involving volumes. Since those really are
fundamental, rather detailed proofs are for once included. The reader is referred to any standard
geometric functional analysis textbook for an enlarged outline of the fruitful interplay between convex
geometry and functional analysis (e.g. [7], [8] or [10]).

In the sequel, the Lebesgue measure on Rn will be denoted indiscriminately by either Vol(·) or | · |.

Theorem A.4 (Prekopa-Leindler functional inequality)
Let f, g, h : Rn → [0; +∞] and 0 ≤ λ ≤ 1.
Assume that those are such that: ∀ x, y ∈ Rn, h(λx+ (1− λ)y) ≥ f(x)λg(y)1−λ

Then:
∫
Rn

h ≥
(∫

Rn

f

)λ(∫
Rn

g

)1−λ

Proof : The preliminary observation in showing Prekopa-Leindler inequality is that for compact sets
A,B ⊂ R, |A| + |B| ≤ |A + B|. Indeed, by translation invariance of the Lebesgue measure on R,
one might assume without loss of generality that A ⊂ R− and B ⊂ R+, so that A,B ⊂ A + B and
|A ∩B| = 0, which implies that |A|+ |B| ≤ |A+B|.

Then comes the initialization step which consists in proving Prekopa-Leindler inequality on R.

By the definition of Lebesgue’s integral itself: ∀ F : R→ [0; +∞],
∫
R

F =
∫ +∞

0
|{F ≥ a}|da.

Yet, if f, g, h : R→ [0; +∞] and 0 ≤ λ ≤ 1 satisfy the assumptions of Prekopa-Leindler inequality on
R, then: ∀ a > 0, λ{f ≥ a} + (1 − λ){g ≥ a} ⊂ {h ≥ a}, so that by the preliminary observation:
λ|{f ≥ a}|+ (1− λ)|{g ≥ a}| ≤ |λ{f ≥ a}+ (1− λ){g ≥ a}| ≤ |{h ≥ a}|.
Integrating on both sides over a > 0 yields: λ

∫
R

f + (1− λ)
∫
R

g ≤
∫
R

h.

And by arithmetic-geometric mean inequality:
(∫

R

f

)λ(∫
R

g

)1−λ
≤
∫
R

h.

To finish with is the induction step on the dimension.
Assume Prekopa-Leindler inequality holds on Rn−1 and consider f, g, h : Rn → [0; +∞] and 0 ≤ λ ≤ 1
satisfying the assumptions of Prekopa-Leindler inequality on Rn.
Defining for any F : Rn → [0; +∞] and any t ∈ R, Ft : x ∈ Rn−1 7→ F (t, x), we then have:
t = λr + (1− λ)s ⇒ ∀ x, y ∈ Rn−1, ht(λx+ (1− λ)y) ≥ fr(x)λgs(y)1−λ.

So by induction hypothesis:
∫
Rn−1

ht ≥
(∫

Rn−1

fr

)λ(∫
Rn−1

gs

)1−λ
.

Hence, by Prekopa-Leindler inequality on R:
∫
R

(∫
Rn−1

ht

)
≥
(∫

R

(∫
Rn−1

fr

))λ(∫
R

(∫
Rn−1

gs

))1−λ
,

which is precisely Prekopa-Leindler inequality on Rn.

Theorem A.5 (Brunn-Minkowski geometric inequality)
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• Additive dimensional form: For any non-empty measurable sets A,B ⊂ Rn:

Vol(A+B)1/n ≥ Vol(A)1/n + Vol(B)1/n

• Multiplicative adimensional form: For any measurable sets A,B ⊂ Rn and any 0 ≤ λ ≤ 1:

Vol(λA+ (1− λ)B) ≥ Vol(A)λVol(B)1−λ

Proof : Brunn-Minkowski geometric inequality is actually nothing more than Prekopa-Leindler func-
tional inequality (theorem A.4) applied to f = 1A, g = 1B and h = 1λA+(1−λ)B.

Corollary A.6 (Brunn’s principle: Hyperplane sections of a convex body)
Let K ⊂ Rn be a convex body and u ∈ Rn.
Define fK,u : t ∈ R 7→ Vol

(
K ∩ {tu+ u⊥}

)
. Then, [fK,u]1/(n−1) is concave on its support.

If K is additionally symmetric, then fK,u is even, and hence maximal in 0.

Proof : Consider the hyperplane sections of K Kt := K ∩ {tu+ u⊥}, t ∈ R.
By convexity of K, for all r, s ∈ R and all 0 ≤ λ ≤ 1: λKr + (1 − λ)Ks ⊂ Kλr+(1−λ)s, which implies
by Brunn-Minkowski inequality (theorem A.5):
λVol(Kr)1/(n−1) + (1− λ)Vol(Ks)1/(n−1) ≤ Vol(λKr + (1− λ)Ks)1/(n−1) ≤ Vol(Kλr+(1−λ)s)

1/(n−1)

And this means precisely, as wanted, that for all r, s ∈ R and all 0 ≤ λ ≤ 1:

fK,u(λr + (1− λ)s)1/(n−1) ≥ λfK,u(r)1/(n−1) + (1− λ)fK,u(s)1/(n−1)

A.3 Volume-radius and mean-width of a convex body

For any real m-dimensional Hilbert space (H, 〈·|·〉), we will later denote by Vol(·) the m-dimensional
Lebesgue measure on H.

Let n ∈ N∗. For a given convex body K ⊂ Rn, we define its volume-radius as the radius of the

euclidean ball which has the same volume: vrad(K) :=
(

Vol(K)

Vol
(
Bn2

))1/n

.

Theorem A.7 (Volume-radii of the commutative p-norm unit balls)
Let n ∈ N∗ and 1 ≤ p ≤ +∞.

The volume of the unit ball of Rn for ‖ · ‖p is: Vol
(
Bn
p

)
=

[
2Γ(1 + 1/p)

]n
Γ(1 + n/p)

.

As a consequence: vrad
(
Bn
p

)
∼

n→+∞

Γ(1 + 1/p)
Γ(1 + 1/2)

p1/p

21/2

( e
n

)1/p−1/2
.

In particular: vrad
(
Bn

1

)
∼

n→+∞

√
2e
π

1√
n

and vrad
(
Bn
∞
)
∼

n→+∞

√
2e
π

√
n.

Let us recall that the Gamma function is defined by: ∀ x > 0, Γ(x) :=
∫ +∞

0
tx−1e−tdt.

Remark A.8 Theorem A.7 is actually a special instance of the more general result:

For all symmetric convex body K ⊂ Rn and all p > 0, |K| =
∫
Rn
e−gK(x)pdx

Γ(1 + n/p)
.

The latter is a consequence of the computation:∫
Rn
e−gK(x)pdx =

∫
Rn

∫
t>gK(x)p e

−tdtdx =
∫ +∞

0

∫
gK(x)<t1/p e

−tdxdt =
∫ +∞

0 e−t|t1/pK|dt = |K|
∫ +∞

0 tn/pe−tdt

One thing we retrieve from theorem A.7 is:

∀ 1 ≤ p, p′ ≤ +∞, 1
p

+
1
p′

= 1, vrad
(
Bn
p′
)
' n1/2−1/p′ =

1
n1/2−1/p

' 1
vrad

(
Bn
p

)
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Hence, in light of the duality formula 11: ∀ 1 ≤ p ≤ +∞, vrad
(
(Bn

p )◦
)
' 1

vrad
(
Bn
p

) .

We shall see in theorem A.9 below that such inverse scaling between the volume-radius of a symmetric
convex body and the one of its polar is in fact not specific to the p-norm balls.

Theorem A.9 (Santaló’s inequalities)
There exists 0 < c < 1 such that for all n ∈ N∗ and all K ⊂ Rn symmetric convex body:[
cnVol

(
Bn

2

)]2
≤ Vol

(
K
)
Vol
(
K◦
)
≤
[
Vol
(
Bn

2

)]2
, i.e. c ≤ vrad

(
K
)
vrad

(
K◦
)
≤ 1.

Proof : The so-called direct Santaló inequality, that is the upper-bound on Vol(K)Vol(K◦), is amongst
the “standard” geometric inequalities. Let us sketch the proof due to Meyer and Pajor [17], which
makes essential use of the Steiner symmetrization (see e.g. [10] for a detailed presentation).

The Steiner symmetrization of a symmetric convex body K ⊂ Rn with respect to a hyperplane H of
Rn is defined as: KH :=

{
1
2(x− y), x, y ∈ K, x− y ∈ H⊥

}
. It satisfies the two main properties:

• Volume-preservingness: Vol(KH) = Vol(K)

• Convergence to an euclidean ball (in geometric distance dg(K,L) := inf{β/α, αL ⊂ K ⊂ βL}):
∃ (Hk)k∈N : KHk →

k→+∞
K∗ where K∗ = vrad(K)Bn

2 .

To complete the proof, it thus suffices to show that:

Vol((KH)◦) ≥ Vol(K◦) (13)

Indeed, taking then (Hk)k∈N such that KHk →
k→+∞

K∗, we also have (KHk)◦ →
k→+∞

(K∗)◦.

So, since already ∀ k ∈ N, Vol(KHk) = Vol(K), if additionally ∀ k ∈ N, Vol((KHk)◦) ≥ Vol(K◦), then
∀ k ∈ N, Vol(KHk)Vol((KHk)◦) ≥ Vol(K)Vol(K◦).
And consequently Vol(K∗)Vol((K∗)◦) ≥ Vol(K)Vol(K◦) i.e. [Vol

(
Bn

2

)
]2 ≥ Vol(K)Vol(K◦).

Now, considering for any convex body K̃ its slices K̃[s] := {x ∈ H, x + suH ∈ K̃}, s ∈ R, where
H⊥ = RuH and ‖uH‖2 = 1, we have by Fubini: Vol(K̃) =

∫
R

Vol(K̃[s])ds. So to get equation 13, it is
actually enough to show that:

∀ s ∈ R, Vol((KH)◦[s]) ≥ Vol(K◦[s]) (14)

Yet, one may check that, by symmetry of K◦: ∀ s ∈ R, 1
2(K◦[s]−K◦[s]) ⊂ (KH)◦[s], so that:

∀ s ∈ R, Vol((KH)◦[s]) ≥ Vol
(

1
2(K◦[s]−K◦[s])

)
≥ (Vol(K◦[s])Vol(−K◦[s]))1/2 = Vol(K◦[s]), where

the next to last inequality is by Brunn-Minkowski inequality (theorem A.5).
This is precisely equation 14.

Proving the so-called reverse Santaló inequality, that is the lower-bound on Vol(K)Vol(K◦), is much
more involved. It relies on Milman’s isomorphic symmetrization introduced in [18]. The reader is
refered again to [10] for a complete proof.

Let d ∈ N∗. H(Cd) is a d2-dimensional real vector space. Thus, if we still define the volume-radius of
a convex body K ⊂ H(Cd) as the radius of the euclidean ball which has the same volume as K, we

get: vrad(K) :=
(

Vol(K)

Vol
(
Bd

2
2

))1/d2

.

The results of theorem A.10 below are taken from [20].

Theorem A.10 (Volume-radii of the non-commutative p-norm unit balls)
Let d ∈ N∗.
The unit ball of H(Cd) for ‖ · ‖2 has the same volume as the unit ball of Rd

2
for ‖ · ‖2:
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Vol
(
Bd
‖·‖2

)
= Vol

(
Bd2

2

)
=

√
π
d2

Γ(1+d2/2)
, so that:

(
Vol

(
Bd
‖·‖2

))1/d2

∼
d→+∞

√
2πe
d .

And more generally, for all 1 ≤ p ≤ +∞, the volume of the unit ball of H(Cd) for ‖ · ‖p satisfies:(
Vol

(
Bd
‖·‖p

))1/d2

∼
d→+∞

√
2πe3/2∆(p/2)
d1/2+1/p

, with 1
4 ≤ ∆(q) ≤ 4 for 1

2 ≤ q ≤ +∞, and

{
∆(1) = e−1/2

∆(+∞) = 1
4

.

As a consequence: ∀ 1 ≤ p ≤ +∞, vrad
(
Bd
‖·‖p

)
∼

d→+∞

√
e1/2∆(p/2)d1/2−1/p.

Hence, regarding the volume-radii of both the commutative and non-commutative p-norm unit balls,
one fact that may be worth pointing out is the following:

∀ 1 ≤ p ≤ +∞, vrad
(
Bd
‖·‖p

)
' vrad

(
Bd
p

)
' d1/2−1/p

This is a striking phenomenon. Indeed, the non-commutative Hilbert space H(Cd) has real dimension
d2. Nonetheless, the relation between the volumes of its p-norm balls and the one its euclidean ball
is not the same as the relation which holds in the d2-dimensional commutative Hilbert space Rd

2
, but

instead the same as the relation which holds in the d-dimensional commutative Hilbert space Rd.

Remark A.11 Other quantities that might be of interest regarding the volume considerations in the
geometry of a given convex body K ⊂ Rn are its in-radius inrad(K) and its out-radius outrad(K):
inrad(K) is the radius of the largest euclidean ball (centered at the center of gravity of K) which is
contained into K, whereas outrad(K) is the radius of the smallest euclidean ball (centered at the center
of gravity of K) which contains K.

Let K ⊂ Rn be a convex body containing 0 in its interior.
For all unit vector u ∈ Sn2 , we define the width of K in the direction u as: w(K,u) := sup

x∈K
〈x|u〉.

We then define the mean-width of K as: w(K) :=
∫
Sn2

w(K,u)du, where du denotes the uniform

probability distribution over Sn2 .

When K is symmetric, we may write more simply (consult appendix A.1 for needed notations):

w(K,u) = gK◦(u) and w(K) =
∫
Sn2

gK◦(u)du

Theorem A.12 (Urysohn’s inequality)
Let K ⊂ Rn be a symmetric convex body. Then: vrad(K) ≤ w(K).

Proof : By integrating 1Bn2 and 1K◦ in polar coordinates, we see that:

Vol(Bn
2 ) =

∫
Rn

1Bn2
(x)dx =

∫
Sn2

∫ 1

0
rn−1drdu

Vol(K◦) =
∫
Rn

1K◦(x)dx =
∫
Sn2

∫ 1/gK◦ (u)

0
rn−1drdu =

∫
Sn2

∫ 1

0
gK◦(u)−nsn−1dsdu (s = gK◦(u)r)

Hence, by Jensen’s inequality applied to the convex function (·)−1/n, we get:

(
Vol(K◦)
Vol(Bn

2 )

)−1/n

=

(∫
Sn2

gK◦(u)−ndu

)−1/n

≤
∫
Sn2

gK◦(u)du = w(K)

Now, by Santaló’s inequality (theorem A.9), we know that:
(

Vol(K)
Vol(Bn2 )

)1/n
≤
(

Vol(K◦)
Vol(Bn2 )

)−1/n
, which

yields as advertized: vrad(K) ≤ w(K).
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A.4 Estimates on entropy numbers by a volumic approach

Let (X, d) be a metric space and T ⊂ X be a subset of X. Fix ε > 0.
A collection of points {xi, 1 ≤ i ≤ n} ⊂ T is said to be:

• an ε-net of T for d if T ⊂
⋃

1≤i≤n
Bd(xi, ε).

• an ε-separated set in T for d if ∀ 1 ≤ i 6= j ≤ n, d(xi, xj) ≥ ε.

The cardinality of a minimal ε-net of T for d is called the covering number N(T, d, ε).
The cardinality of a maximal ε-separated set in T for d is called the packing number K(T, d, ε).
The logarithms of the covering and packing numbers are often referred to as the entropy numbers.

Noticing that a maximal ε-separated set is an ε-net, and that an ε
2 -net may be mapped to an ε-separated

set, one gets the relations:
N(T, d, ε) ≤ K(T, d, ε) ≤ N(T, d, ε/2)

Example A.13 For all A,B symmetric convex bodies of Rn and ε > 0, set N(A, εB) := N(A, gB, ε)
(consult appendix A.1 for needed notations).
By simply estimating the volumes of either a minimal ε-net of A for gB or a maximal ε-separated set
in A for gB, one gets the bounds:

Vol
(

1
εA
)

Vol(B)
≤ N(A, εB) ≤

Vol
(
B + 2

εA
)

Vol(B)

In particular, if B ⊂ A:
(

1
ε

)n Vol(A)
Vol(B)

≤ N(A, εB) ≤
(

1 +
2
ε

)n Vol(A)
Vol(B)

.

B Gaussian variables

We will assume throughout this section that we have at hand an abstract probability space (Ω,P) on
which all random variables are defined.

B.1 Generalities

• A real-valued random variable g : Ω→ R is said to be (standard) gaussian if:

∀ t ∈ R, P(g > t) =
1√
2π

∫ +∞

t
e−x

2/2dx

We will write in such case: g ∼ N (0, 1).

• Let n ∈ N∗. A vector-valued random variable g = (g1, . . . , gn) : Ω→ Rn is said to be (standard)
gaussian if the gi : Ω → R, 1 ≤ i ≤ n, are independent (standard) gaussian real-valued random
variables, i.e. if:

∀ (t1, . . . , tn) ∈ Rn, P(g1 > t1, . . . , gn > tn) =
1√
2π

n

∫ +∞

t1

· · ·
∫ +∞

tn

e−(x2
1+···x2

n)/2dx1 . . . dxn

We will write in such case: g ∼ N n(0, 1).

The (standard) gaussian probability measure on Rn is thus defined as:

dνn(x) :=
1√
2π

n e
−(x2

1+···x2
n)/2dx1 . . . dxn

Its two essential features are being a product measure and invariant under orthogonal transformations.
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Remark B.1 More generally, given µ ∈ R and σ > 0, one will say that a real-valued random variable

g : Ω→ R has law N (µ, σ2) if: ∀ t ∈ R, P(g > t) =
1√

2πσ2

∫ +∞

t
e−(x−µ)2/2σ2

dx.

For any real-valued random variable Z, we define its p-norm, 1 ≤ p ≤ +∞, as:
‖Z‖p := (E|Z|p)1/p if 1 ≤ p < +∞, and ‖Z‖∞ := sup |Z|.
Then, for any collection Z := {Zi, i ∈ I} of real-valued random variables and any ε > 0, we may
define its covering number: NZ(ε) := N(Z, ‖ · ‖2, ε) (cf appendix A.4).

Definition B.2 A collection {Zi, i ∈ I} of real-valued random variables is called a Gaussian process
if all the linear combinations of the variables Zi, i ∈ I, are Gaussian.

The following theorem, which provides bounds on the supremum of a Gaussian process indexed by a
countable set, is quite fundamental. A proof and additional comments can be found in [9].

Theorem B.3 There exist constants C,C ′ > 0 such that for any Gaussian process Z := {Zi, i ∈ I}
indexed by a countable set I, we have:

C sup
ε>0

(
ε
√

logNZ(ε)
)
≤ E

(
sup
i∈I

Zi

)
≤ C ′

∫ +∞

0

√
logNZ(ε)dε

This general result is actually obtained by iterating the finite-case theorem below (which will often be
sufficient for the applications we have in mind):

Theorem B.4 Let {Zi, i ∈ I} be a Gaussian process indexed by a finite set I and such that:
∃ α, β > 0 : ∀ i ∈ I, ‖Zi‖2 ≤ α and ∀ i 6= j ∈ I, ‖Zi − Zj‖2 ≥ β.

Then: Cβ
√

log |I| ≤ E

(
sup
i∈I

Zi

)
≤ C ′α

√
log |I|.

Furthermore, if the Gaussian process is additionally centered, then one may choose C ′ =
√

2.

B.2 Gaussian variables and mean-width

Within the framework of Gaussian variables, one may give an alternative definition of the mean-width
as the one provided in appendix A.3.

Let K ⊂ Rn be a convex body containing 0 in its interior.

Its mean-width may actually be equivalently defined as: w(K) := EG∼Nn(0,1)

[
sup
x∈K

〈
x
∣∣∣ G
‖G‖2

〉]
.

Yet, for G ∼ N n(0, 1), ‖G‖2 and G
‖G‖2 are independent random variables, so that:

E

[
sup
x∈K
〈x|G〉

]
= E

[
‖G‖2 sup

x∈K

〈
x
∣∣∣ G
‖G‖2

〉]
= E‖G‖2 E

[
sup
x∈K

〈
x
∣∣∣ G
‖G‖2

〉]
= γnE

[
sup
x∈K

〈
x
∣∣∣ G
‖G‖2

〉]
, where

γn := EG∼Nn(0,1)‖G‖2 =
√

2Γ(n/2+1/2)
Γ(n/2) , so that

√
n− 1 ≤ γn ≤

√
n.

We thus get in the end: w(K) = 1
γn
EG∼Nn(0,1)

[
sup
x∈K
〈x|G〉

]
.

When K is symmetric, we may write more simply: w(K) = 1
γn
EG∼Nn(0,1) [gK◦(G)].

Theorem B.4 then provides a quite often efficient way of bounding the mean-width of convex bodies
that are the convex enveloppe of a finite number of points.

Let indeed T ⊂ τBn
2 be a finite set. Then: vrad(Conv(T )) ≤ w(Conv(T )) ≤ τ

√
2 log |T |√
n

, where the first
inequality is by Urysohn’s inequality (theorem A.12) and the second inequality is by theorem B.4.

If additionally: ∀ x 6= y ∈ T, ‖x− y‖2 ≥ δ, then by theorem B.4 again: w(Conv(T )) &
δ
√

log |T |√
n

.
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Example B.5 Mean-width of the commutative p-norm unit balls.

• For all 1 < p ≤ +∞ and 1 ≤ p′ < +∞ such that 1
p + 1

p′ = 1, we have:

w
(
Bn
p

)
= 1

γn
EG∼Nn(0,1)‖G‖p′ ' n1/p′

n1/2 = n1/2−1/p ' vrad
(
Bn
p

)
• w (Bn

1 ) = 1
γn
EG∼Nn(0,1)‖G‖∞ '

√
logn√
n
'
√

log n vrad (Bn
1 )

B.3 Brief incursion into random matrix theory: the GUE

The results from random matrix theory presented in this section are by far not the most general ones:
we have focussed on the limited statements that were of use for our purpose. The reader is referred
to [11] for a complete exposition and proofs.

• A complex matrix-valued random variable G = (Gj,k)1≤j,k≤d : Ω→ Cd×d is said to be (standard)
gaussian if the Gj,k : Ω→ C, 1 ≤ j, k ≤ d, are independent (standard) gaussian complex-valued
random variables.
We shall write in such case: ∀ 1 ≤ j, k ≤ d, Gj,k ∼ NC(0, 1) and G ∼ N d×d

C
(0, 1).

• A Hermitian-valued random variable H : Ω→ H(Cd) is said to belong to the Gaussian Unitary
Ensemble (GUE) if H = 1

2(G+G†) with G ∼ N d×d
C

(0, 1).
We shall write in such case: H ∼ GUE(d).

For any H ∈ H(Cd), we denote by λ1(H), . . . , λd(H) ∈ R its eigenvalues, and by λmax(H) its largest
eigenvalue.

We then define its empirical eigenvalue distribution as: NH :=
1
d

d∑
j=1

δλj(H) : R→ [0; 1].

In other words, NH is the probability measure on R which is characterized by the property that for
any I ⊂ R, NH(I) is the proportion of eigenvalues of H belonging to I.

We also introduce the so-called semi-circular probability measure on R:

dνSC(x) :=
1

2π

√
4− x21[−2;2](x)dx

Theorem B.6 (Wigner’s semi-circular law)
For every d ∈ N∗, let Hd ∼ GUE(d). Then N 1√

d
Hd

→
d→+∞

νSC in the following sense:

∀ ε > 0, ∀ I ⊂ R, lim
d→+∞

P

(∣∣∣∣N 1√
d
Hd

(I)− νSC(I)
∣∣∣∣ > ε

)
= 0

Furthermore, λmax
(

1√
d
Hd

)
→

d→+∞
2 in the following sense:

∀ ε > 0, lim
d→+∞

P

(∣∣∣∣λmax( 1√
d
Hd

)
− 2
∣∣∣∣ > ε

)
= 0

Remark B.7 Wigner’s semi-circular law remains actually valid under much weaker hypotheses on
the considered sequence of random matrices (namely that for all d ∈ N∗, Hd ∈ H(Cd) has independent
centered and suitably bounded entries).
For instance, if not looking at a sequence of GUE matrices but instead at a sequence of GUE matrices
conditioned to have trace 0, the limit eigenvalue distribution will not be affected.
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One consequence of Wigner’s semi-circular law (theorem B.6) is that, for all p ∈ N∗:

E∆∼GUE(d)

[
Tr
∣∣∣∣ 1√
d

∆
∣∣∣∣p] = E∆∼GUE(d)

 d∑
j=1

∣∣∣∣λj ( 1√
d

∆
)∣∣∣∣p
 ∼
d→+∞

d

∫ +∞

−∞
|x|pdνSC(x)

Hence, for all p ∈ N∗, the expectancy of the p-norm of a GUE matrix follows the asymptotics:

E∆∼GUE(d)‖∆‖p ∼
d→+∞

(∫ +∞

−∞
|x|pdνSC(x)

)1/p

d1/p+1/2

Besides: E∆∼GUE(d)‖∆‖∞ ∼
d→+∞

2d1/2

Now, the moments of the semi-circular probability distribution may be computed:∫ +∞

−∞
|x|pdνSC(x) =

1
π

∫ 2

0
xp
√

4− x2dx

=
4× 2p

π

∫ π/2

0
sinp θ(1− sin2 θ)dθ

=
4× 2p

π

(
4(p− 1)

∫ π/2

0
sinp−2 θ(1− sin2 θ)dθ − (p+ 1)

∫ π/2

0
sinp+2 θ(1− sin2 θ)dθ

)

= 4(p− 1)
∫ +∞

−∞
|x|p−2dνSC(x)− (p+ 1)

∫ +∞

−∞
|x|p+2dνSC(x)

where we operated the change of variables x = sin θ from the first to the second line, and an integration
by parts from the second to the third.

We thus get the recursivity relation: ∀ p ∈ N,
∫ +∞

−∞
|x|p+2dνSC(x) =

2(p+ 1)
dp/2e+ 2

∫ +∞

−∞
|x|pdνSC(x).

Which implies that for all q ∈ N:∫ +∞

−∞
|x|2qdνSC(x) =

1
q + 1

(
2q
q

)∫ +∞

−∞
dνSC(x) =

1
q + 1

(
2q
q

)
∫ +∞

−∞
|x|2q+1dνSC(x) =

1
q + 1

(
2q
q

)∫ +∞

−∞
|x|dνSC(x) =

1
q + 1

(
2q
q

)
8

3π

In fact:
∫ +∞
−∞ dνSC(x) = 1 and

∫ +∞
−∞ |x|dνSC(x) = 8

π

∫ π/2
0 sin θ cos2 θdθ = 8

π

[
− cos3 θ

3

]π/2
0

= 8
3π .

Example B.8 Mean-width of the non-commutative p-norm unit balls.
For all 1 ≤ p ≤ +∞ and 1 ≤ p′ ≤ +∞ such that 1

p + 1
p′ = 1, we have:

w
(
Bd
‖·‖p

)
= 1

γd2
EG∼GUE(d)‖G‖p′ ' d1/2+1/p′

d = d1/2−1/p ' vrad
(
Bd
‖·‖p

)

C Large deviations

C.1 Concentration rate and deviation inequalities on a probability metric space

The so-called concentration of measure phenomenon and the counter-intuitive results it yields in high-
dimensional convex geometry have been extensively studied already. Those subjects are however still
continuously shaped by new developments. A both general and detailed presentation of this field may
be found in the very accessible [7] or the more technical [8]. [12] presents a more probability-orientated
account of these ideas.

Let (X, d, µ) be a probability metric space. We define:
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• The diameter of (X, d): D(X,d) := sup
x,y∈X

d(x, y) ∈ [0; +∞].

• The concentration rate of (X, d, µ): α(X,d,µ) : r ∈
]
0; +∞

[
7→ sup

A⊂X, µ(A)≥ 1
2

µ(X \ Ar) ∈ [0; 1],

where Ar := {x ∈ X, d(x,A) ≥ r} is the r-extension (or r-neighbourhood) of A.

A function f : (X, d)→ R is said to be L-lipschitz, L ∈ R+, if: ∀ x, y ∈ X, |f(x)− f(y)| ≤ L d(x, y).

A median for µ of a function f : (X,µ)→ R is any mf ∈ R such that:

{
µ
(
{f ≤ mf}

)
≥ 1

2

µ
(
{f ≥ mf}

)
≥ 1

2

.

The average for µ of a function f : (X,µ)→ R is: Mf :=
∫
X fdµ.

Theorem C.1 Let f : (X, d, µ)→ R be a L-lipschitz function. Then:

∀ r > 0, µ
(
{|f −mf | ≥ r}

)
≤ 2 α(X,d,µ)

( r
L

)
and µ

(
{|f −Mf | ≥ r}

)
≤ 2 α(X,d,µ)

( r
L

)
Conversely: ∀ r > 0, α(X,d,µ)(r) = sup

f :(X,d,µ)→R
f 1-lipschitz

1
2
µ
(
{|f −mf | ≥ r}

)
= sup

f :(X,d,µ)→R
f 1-lipschitz

1
2
µ
(
{|f −Mf | ≥ r}

)

What theorem C.1 brings to light is that there is a strong connection between the so-called concentra-
tion of lipschitz functions f : (X, d, µ)→ R around their median or their average and the isoperimetric
problem on (X, d, µ), namely: given 0 < ε < D(X,d) and 0 < m < 1, find Ã ⊂ X such that µ(Ã) = m

and µ(Ãε) = inf
A⊂X, µ(A)=m

µ(Aε).

Example C.2 Concentration of measure phenomenon on the real euclidean unit sphere.
Denote by µn the n-dimensional (volumic) Lebesgue measure on Rn and by σn the induced normalized
(n− 1)-dimensional (surfacic) measure on Sn2 . σn is also the unique rotationally invariant probability
measure on Sn2 (unique Haar probability measure for the action of the orthogonal group O(n) on Sn2 ).
The isoperimetric problem has been solved by Lévy on (Sn2 , ‖ · ‖2, σn):
For all 0 < ε < 1 and 0 < m < 1, inf

A⊂Sn2 , σn(A)=m
σn(Aε) exists and is attained by the spherical cap

C(x, r) := {y ∈ Sn2 , ‖x− y‖2 ≤ r} for any x ∈ Sn2 and r such that σn
(
C(x, r)

)
= m.

Now, it holds that: ∀ x ∈ Sn2 , ∀ 0 < r <
√

2, σn
(
C(x, r)

)
≤ e−nε2r/2 where εr := 1− r2

2 .
We thus get as a corollary of Lévy’s isoperimetric theorem the following concentration inequality for
lipschitz functions on (Sn2 , ‖ · ‖2, σn):
If f : (Sn2 , ‖ · ‖2, σn)→ R is a L-lipschitz function, then: ∀ r > 0, σn

(
{|f −mf | ≥ r}

)
≤ 2e−nr

2/2L2
.

The so-called Laplace transform method enables one to get more user-friendly concentration results
whenever (X, d) has finite diameter. It may be summarized as follows:

First of all, we have by Markov’s inequality that for any function g : (X, d, µ)→ R and any a ∈ R:

µ
(
{g ≥ a}

)
≤ inf

λ≥0

(
e−λa

∫
X
eλgdµ

)
Then, we have by Jensen’s inequality that for any function f : (X, d, µ)→ R and any λ ≥ 0:∫

X
eλ[f(x)−Mf ]dµ(x) ≤

∫
X×X

eλ[f(x)−f(y)]dµ(x)dµ(y)

Moreover, if ∀ x, y ∈ X, |f(x)− f(y)| ≤ k, then
∫
X×X

eλ[f(x)−f(y)]dµ(x)dµ(y) ≤ ek2λ2/2.

And the last thing we should notice is that whenever D(X,d) < +∞, then any L-lipschitz function
f : (X, d, µ)→ R satisfies: ∀ x, y ∈ X, |f(x)− f(y)| ≤ LD(X,d).

Putting everything together, the result we eventually come to is:
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Theorem C.3 If D(X,d) < +∞, then for any L-lipschitz function f : (X, d, µ)→ R, we have:

∀ r > 0, µ
(
{|f −Mf | ≥ r}

)
≤ 2e−r

2/2[D(X,d)]
2L2

Remark C.4 As a consequence, we also get by theorem C.1 the corresponding inequality for the
concentration rate of (X, d, µ): if D(X,d) < +∞, then ∀ r > 0, α(X,d,µ)(r) ≤ e−r

2/8[D(X,d)]
2
.

The concentration inequality from theorem C.3 itself generally does not provide a good estimate (the
main problem being that it does not depend on the measure µ but only on the distance d). Nonetheless,
a nice property of this theorem is that it may actually be recursively generalized to spaces with a
product structure, on which it might yield much more accurate concentration inequalities.

Theorem C.5 Let (X1, d1), . . . , (Xn, dn) be n metric spaces with finite diameter.
We consider the product space X := X1×· · ·×Xn equipped with the product distance d := d1⊕· · ·⊕dn
and any product probability measure µ = µ1⊗· · ·⊗µn. Then, setting D2 := [D(X1,d1)]2+· · ·+[D(Xn,dn)]2,
we have that for any L-lipschitz function f : (X, d, µ)→ R:

∀ r > 0, µ
(
{|f −Mf | ≥ r}

)
≤ 2e−r

2/2D2L2

Deviation inequalities for sums of bounded random variables can be directly deduced from theorem
C.5. The first, and perhaps’ most important, one being:

Theorem C.6 (Hoeffding’s inequality)
Let X1, . . . , Xn be n independent random variables such that ∀ 1 ≤ k ≤ n, ak ≤ Xk ≤ bk.
Setting ∆2 := 1

n

∑
1≤k≤n

(bk − ak)2, we have:

∀ t > 0, P

(∣∣∣∣∣ 1n
n∑
k=1

(Xk − EXk)

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− nt2

2∆2

)

C.2 Orlicz spaces and ψα-random variables

Amongst the numerous properties related to Orlicz spaces, only a few ones which are necessary to our
purpose are exposed here. This short description should be fleshed by referring, for instance, to the
very complete course [14].

Definition C.7 A function ϕ : R+ → R+ is said to be an Orlicz function if it is convex, increasing,
with closed support, and such that ϕ(0) = 0, ϕ(x) →

x→+∞
+∞.

If ϕ is an Orlicz function, a random variable X is said to be a ϕ-random variable if its ϕ-norm,
defined by ‖X‖ϕ := inf

{
c > 0, E

[
ϕ
(
|X|
c

)]
≤ ϕ(1)

}
is finite.

The only examples we shall be interested in are the following:

• For all p ≥ 1, φp : x ∈ R+ 7→ xp

p ∈ R
+ is an Orlicz function. The φp-norm ‖ · ‖φp is actually the

p-order moment E| · |p, so that the space of φp-random variable is nothing else than the Lp-space.

• For all α ≥ 1, ψα : x ∈ R+ 7→ ex
α − 1 is an Orlicz function. The ψ1 random variables are

sometimes referred to as sub-exponential, and the ψ2 random variables as sub-gaussian.

There are actually very precise connections between the Lp and ψα norms of a given random variable.
Explicitly, the following estimate holds:

∀ α ≥ 1,
1

2e2
‖ · ‖ψα ≤ sup

p≥α

(
E| · |p

)1/p
p1/α

≤ 2e‖ · ‖ψα
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Furthermore: ∀ α ≥ 1, L∞ ⊂ Lψα and ‖ · ‖ψα ≤ ‖ · ‖∞.

Hence, the large deviation inequalities that one gets for sums of independent ψα random variables
may be seen as generalizations of the “classical” Hoeffding-type deviation inequalities that one has for
sums of independent bounded random variables (theorem C.6).
For instance in the sub-exponential case, the following Bernstein-type deviation inequality holds:

Theorem C.8 (Bernstein’s inequality)
Let X1, . . . , Xn be n independent centered ψ1 random variables.

Setting M := max
1≤k≤n

‖Xk‖ψ1 and σ2 := 1
n

∑
1≤k≤n

‖Xk‖2ψ1
, we have:

∀ t > 0, P

(∣∣∣∣∣ 1n
n∑
k=1

Xk

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− n

2(2e− 1)
min

(
t2

σ2
,
t

M

))

C.3 Tail bounds for sums of random matrices

Regarding the theory of large deviations for real-valued random variables, a standard reference is [13].
For its extension to matrix-valued random variables, one might refer to [15] or [16].

Let us define the Kullback-Leibler divergence between 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 as:

D(x‖y) := x log
(
x

y

)
+ (1− x) log

(
1− x
1− y

)
Theorem C.9 (Chernoff’s inequality)
Let X1, . . . , Xn be n independent real-valued random variables.

Assume that: ∀ 1 ≤ k ≤ n,

{
0 ≤ Xk ≤ 1
EXk = µk with µ ≤ µk ≤ µ′

. Then:

∀ ε > 0, P

(
1
n

n∑
k=1

Xk ≥ µ′ + ε

)
≤ e−nD(µ′+ε‖µ′) and P

(
1
n

n∑
k=1

Xk ≤ µ− ε

)
≤ e−nD(µ−ε‖µ)

Theorem C.10 (Matrix Chernoff’s inequality)
Let X1, . . . , Xn be n independent H(Cd)-valued random variables.

Assume that: ∀ 1 ≤ k ≤ n,

{
0 ≤ Xk ≤ 1
EXk = Mk with µ1 ≤Mk ≤ µ′1

. Then:

∀ ε > 0, P

(
1
n

n∑
k=1

Xk ≥ (µ′ + ε)1

)
≤ de−nD(µ′+ε‖µ′) and P

(
1
n

n∑
k=1

Xk ≤ (µ− ε)1

)
≤ de−nD(µ−ε‖µ)

Noticing that D(η(1 + δ)‖η) ≥ ηδ2

4 for −1
2 ≤ δ ≤

1
2 , we get as corollaries of Chernoff’s inequalities:

Corollary C.11 Let X1, . . . , Xn be n independent real-valued random variables.

Assume that: ∀ 1 ≤ k ≤ n,

{
0 ≤ Xk ≤ R
EXk = µk ≥ µ1

. Setting M := 1
n

n∑
k=1

Mk, we then have:

∀ 0 < δ <
1
2
, P

(
1
n

n∑
k=1

Xk /∈
[
(1− δ)M ; (1 + δ)M

])
≤ 2e−nµδ

2/4R2
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Corollary C.12 Let X1, . . . , Xn be n independent H(Cd)-valued random variables.

Assume that: ∀ 1 ≤ k ≤ n,

{
0 ≤ Xk ≤ R1
EXk = Mk ≥ µ1

. Setting M := 1
n

n∑
k=1

Mk, we then have:

∀ 0 < δ <
1
2
, P

(
1
n

n∑
k=1

Xk /∈
[
(1− δ)M ; (1 + δ)M

])
≤ 2de−nµδ

2/4R2

D Geometry of quantum states

The idea of having a geometric approach to questions concerning, for instance, the purity and the
separability of high dimensional quantum systems (consult section 1 for further information) is a quite
recent one. [26] provides a concise introduction to this trend.

D.1 Separability

Let Hi ≡ Cdi , 1 ≤ i ≤ K, be K finite-dimensional complex Hilbert spaces, and denote by H =
H1 ⊗ · · · ⊗HK their tensor product complex Hilbert space (H ≡ CD where D = d1 × · · · × dK).
Equipped with the Hilbert-Schmidt inner product, the Hilbert space H(H) of Hermitians on H inherits
a real D2-dimensional euclidean structure. When later speaking about volumes of subsets of H(H), we
will always refer to the corresponding D2-dimensional Lebesgue volume on H(H) (or to the induced
D′-dimensional Lebesgue volume on subspaces of H(H) of real dimension D′ < D2).

The set of states on H is defined as:

D(H) :=
{
ρ ∈ H(H), ρ ≥ 0, Trρ = 1

}
= Conv

{
|ψ〉〈ψ|, |ψ〉 ∈ H, 〈ψ|ψ〉 = 1

}
The set of separable states on H is defined as:

S(H1 : · · · : HK) :=Conv
{
ρ1 ⊗ · · · ⊗ ρK , ρi ∈ D(Hi), 1 ≤ i ≤ K

}
=Conv

{
|ψ1〉〈ψ1| ⊗ · · · ⊗ |ψK〉〈ψK |, |ψi〉 ∈ Hi, 〈ψi|ψi〉 = 1, 1 ≤ i ≤ K

}
Note that the definition of S(H1 : · · · : HK), contrary to the one of D(H), brings in the local structure
of the global Hilbert space H (i.e. its particular tensor product decomposition).
Both D(H) and S(H1 : · · · : HK) are convex subsets of H(H) of real dimension D2− 1 (they belong to
the hyperplane of H(H) of trace 1 Hermitians).

D(H) is invariant under conjugacy by unitaries: ∀ U ∈ U(H), ∀ ρ ∈ D(H), UρU † = ρ
S(H1 : · · · : HK) is invariant under conjugacy by local unitaries:
∀ U1 ∈ U(H1), . . . , UK ∈ U(HK), ∀ ρ ∈ S(H1 : · · · : HK),

(
U1 ⊗ · · · ⊗ UK

)
ρ
(
U †1 ⊗ · · · ⊗ U

†
K

)
= ρ

Theorem D.1 1
D , the so-called maximally mixed state on H, is the only element of D(H) that is fixed

by all the isometries of D(H), and also the only element of S(H1 : · · · : HK) that is fixed by all the
isometries of S(H1 : · · · : HK).
It is thus the center of gravity of both D(H) and S(H1 : · · · : HK).

Proof : Multiples of the identity are the only operators which are fixed by all unitaries.
Since all unitaries are isometries of D(H), it is thus clear that 1

D is the only operator in D(H) which is
fixed by all the isometries of D(H) (the multiplicative factor being imposed by the trace constraint).
Regarding S(H1 : · · · : HK), things are not as obvious.
Let ρ :=

∑
j∈J

λjρ
(1)
j ⊗ · · · ⊗ ρ

(K)
j be an operator in S(H1 : · · · : HK) which is fixed by all the isometries
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of S(H1 : · · · : HK).
In particular, ρ is fixed by all local unitaries, and consequently:

ρ =E
Ui∼U

(
U(Hi)

)
, 1≤i≤K

[(
U1 ⊗ · · · ⊗ UK

)
ρ
(
U †1 ⊗ · · · ⊗ U

†
K

)]
=
∑
j∈J

λjEU1∼U
(
U(H1)

) [U1ρ
(1)
j U †1

]
⊗ · · · ⊗ E

UK∼U
(
U(HK)

) [UKρ(K)
j U †K

]
=
∑
j∈J

λj
1
d1
⊗ · · · ⊗ 1

dK

=
1
D

the next before last equality being due to the fact that: ∀ A ∈ H(Cd), E
U∼U

(
U(Cd)

)[UAU †] = Tr A
d 1.

The volume of D(H) may be computed exactly:

Theorem D.2 (Volume of the states on CD)

Vol
(
D
(
C
D
))

=
√
D(2π)D(D−1)/2 Γ(1)× · · · × Γ(D)

Γ(D2)

As a consequence, the volume-radius of D
(
CD
)

satisfies: vrad
(
D
(
CD
))

=
D→+∞

1
e1/4
√
D

(
1 +O

(
1
D

))
.

The reader is referred to [23] for a complete and rigorous proof.
Nevertheless, it is perhaps’ worth mentioning that the root idea underlying such result is that any
state ρ on CD may be unitarily diagonalized: ρ = UΛU †, where Λ = Diag(λ1(ρ), . . . , λD(ρ)) is ρ’s
diagonal matrix of eigenvalues, and U is ρ’s unitary matrix of eigenvectors.

Due to the hermiticity condition ∀ 1 ≤ k ≤ D, λk(ρ) ∈ R and to the trace condition
D∑
k=1

λk(ρ) = 1, Λ

is determined by D − 1 real parameters.
Due to the phase invariance U ≡ V U for any diagonal unitary V (in the generic case of a non-
degenerate spectrum), U is determined by D2 −D real parameters.
Denoting by LD the space of eigenvalue D-tuples and by UD the space of eigenvector D-tuples, we
thus get: Vol(D(H)) =

√
DVol(LD)Vol(UD).

Now: Vol(LD) = Vol((SD1 )+) = 1
D!

D−1∏
k=0

Γ(D−k)Γ(D−k+1)

Γ(N2)
and Vol(UD) = Vol(U(D))

[Vol(U(1))]D
= (2π)D(D−1)/2

1!×···×(D−1)! .
Which leads in the end to the advertized result.

Regarding the volume-radius of S(H1 : · · · : HK), in the special case when all the Hi, 1 ≤ i ≤ K, have
same dimension, we have the following estimate (established in [22]):

Theorem D.3 (Volume of the set of separable states on (Cd)⊗K ≡ CD)

∃ c, c′ > 1 :
c−K

D1−1/2K
≤ vrad

(
S
(

(Cd)⊗K
))
≤ c′
√
K logK

D1−1/2K

where the constants c, c′ depend neither on d nor on K.

Let us give an outline of the groundwork this result relies on.

One general technique to handle with a n-dimensional convex body S into an underlying n + 1-
dimensional vector space is to look first at its so-called symmetrization Σ := Conv(S ∪ −S), which is
a n+1-dimensional convex body, instead of working directly with S. Indeed, knowing for instance the
n+ 1-dimensional volume of Σ will provide us with a quite accurate estimation of the n-dimensional
volume of S, as the following theorem specifies it:
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Theorem D.4 (Rogers-Shephard inequality)
Let H ⊂ Rn+1 be an hyperplane such that h := inf

x∈H
‖x‖2 > 0 and S ⊂ H be a convex body. Denoting

by Σ := Conv(S ∪ −S) the symmetrization of S, we have:

2hVoln(S) ≤ Voln+1(Σ) ≤ 2h
2n

n+ 1
Voln(S)

In the specific case we are interested in, namely S = S(H), we have n = D2 − 1 and h = 1√
D

, so that

we get the estimates: D3/2

2D2 Vol(Σ(H)) ≤ Vol(S(H)) ≤ D1/2

2 Vol(Σ(H)).
Hence, passing to the volume-radii: 1

2vrad(Σ(H)) . vrad(S(H)) . vrad(Σ(H)).

To obtain an upper-bound on the volume of Σ((Cd)⊗K), one possible strategy might be the following:
Let 0 < δ < 1

4 and consider Mδ a δ-net for ‖ · ‖2 within the complex 2-norm unit sphere Sd2(C).
Then, defining P(Mδ,K) := {±|ψ1〉〈ψ1| ⊗ · · · ⊗ |ψK〉〈ψK |, |ψi〉 ∈ Mδ, 1 ≤ i ≤ K}, one may check
that: Σ((Cd)⊗K) ⊂ 1

(1−2δ2)K
Conv {P(Mδ,K)}.

Now, since Sd2(C) ≡ S2d
2 (R), Mδ may be chosen such that |Mδ| ≤

(
1 + 2

δ

)2d (cf appendix A.4), so

that: |P(Mδ,K)| ≤ 2|Mδ|K ≤ 2
(
1 + 2

δ

)2Kd.
Consequently, by theorem B.4: vrad (Conv {P(Mδ,K)}) ≤

√
2×log |P(Mδ,K)|√

(dK)2
≤

2
√

2K log(1+ 2
δ )

dK−1/2 .

And hence in the end: vrad
(
Σ((Cd)⊗K)

)
≤ inf

0<δ<1/4

1
(1−2δ2)K

vrad (Conv {P(Mδ,K)}) ≤ c′
√
K logK

dK−1/2

(choosing for instance δ = 1
2K ).

To obtain a lower-bound on the volume of Σ((Cd)⊗K), one may reason as follows:
Defining Ω((Cd)⊗K) := Conv{|ψ1〉〈φ1|⊗ · · ·⊗ |ψK〉〈φK |, |ψi〉, |φi〉 ∈ Bd

2(C), 1 ≤ i ≤ K}, and denoting
by Π the projection onto Hermitian part, it may be shown that: 1

hK
Π
(
Ω((Cd)⊗K)

)
⊂ Σ((Cd)⊗K),

with hK ≤ 6K/2.
Now, Conv{|ψ〉〈φ|, |ψ〉, |φ〉 ∈ Bd

2(C)} may be identified with
(
Bd

2(C)
)⊗2, providing the identifications:

Ω((Cd)⊗K) ≡
(
Bd

2(C)
)⊗2K and Π

(
Ω((Cd)⊗K)

)
≡
(
Bd

2(R)
)⊗2K .

Moreover, for any m, k ∈ N∗, one has the inclusion: 1
m(k−1)/2B

mk
2 (R) ⊂ (Bm

2 (R))⊗k.

So eventually: 1
6K/2

1
d(2K−1)/2B

d2K

2 (R) ⊂ Σ((Cd)⊗K), which implies:
√

6
−K

dK−1/2 ≤ vrad
(
Σ((Cd)⊗K)

)
.

Concerning the in-radii of D(H) and S(H1 : · · · : HK) we have (see [31] and [32]):

inrad(D(H)) =
1√

D(D − 1)
and inrad(S(H1 : · · · : HK)) ≥ 1

2K/2−1
√
D(D − 22−K)

In the bi-partite case, it thus stands quite remarkably that: inrad(S(H1 : H2)) = inrad(D(H1 ⊗H2)).

D.2 Random states

Most of the material exposed in this section may be found wrapped and proved in [24] and [25].

Let H ≡ Cd be a finite-dimensional Hilbert space. One may be interested in looking at various
properties of a “typical” state on H. Nevertheless, it is known that there is no distinguished probability
distribution over the set D(H) of density operators on H, so that defining what a “random” state on
H would be might be tricky.
The question however does not arise when only looking at pure states: there is indeed a distinguished
probability distribution over the unit vectors of H, namely the uniform one (unique normalized Haar
measure over Sd2(C)).
Therefore, one option if one is to define random states on H would be to consider a bigger composite
Hilbert space H⊗H′ ≡ Cd⊗Cd′ and to look at random mixed states on H obtained by partial-tracing
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on H′ random pure states on H⊗ H′: ρ = TrH′(|ψ〉〈ψ|), where |ψ〉 is drawn according to the uniform
probability distribution over the unit vectors of H⊗H′.

Let us introduce first a few notations:

• For all d ∈ N∗, we denote by σFS(d) the probability measure over the unit vectors of Cd induced
by the Fubini-Study distance dFS(|ψ〉, |ψ̃〉) := ‖|ψ〉 − |ψ̃〉‖2.

• For all d ∈ N∗, we denote by µHS(d) the probability measure over the density operators on Cd

induced by the Hilbert-Schmidt distance dHS(ρ, ρ̃) := ‖ρ− ρ̃‖2.

• For all d, d′ ∈ N∗, we denote by µd,d′ the probability law of the normalized (d, d′)-Wishart
matrices, that is G ∼ N d×d′

C
(0, 1) ⇒ GG†

Tr(GG†)
∼ µd,d′ (consult appendix B.3 for definitions and

notations regarding complex matrix-valued Gaussian variables).

Theorem D.5 Let d, d′ ∈ N∗, and suppose |ψ〉 ∼ σFS(d× d′).
Then, identifying Cd×d

′
with Cd ⊗ Cd′: Tr

Cd
′ (|ψ〉〈ψ|) ∼ µd,d′.

The following important theorem illustrates how the Hilbert-Schmidt measure may be viewed as arising
from the Fubini-Study measure.

Theorem D.6 For all d ∈ N∗, µd,d = µHS(d).

Given M ∈ H(Cd) we denote by λ(M) = (λ1(M), . . . , λd(M)) ∈ Rd its eigenvalue-vector.
Let d ∈ N∗ and s ≥ d. Denoting by Pµd,s : (R+)d → [0; 1] the joint probability distribution of λ(ρ) for
ρ ∼ µd,s, we have:

Pµd,s(λ) =
Γ(ds)∏

0≤j≤d−1

Γ(s− j)Γ(d− j + 1)
δ

1−
∑

1≤k≤d
λk

 ∏
1≤k≤d

λs−dk

∏
1≤k<k′≤d

(λk − λk′)2

From this formula, one may derive the expectation values of various quantities which are computed
from a state’s spectrum.
For instance, the mean value of a random state’s purity is: Eρ∼µd,s

[
Tr(ρ2)

]
= d+s

ds+1 .
And more generally, for any q > 0, the mean value of a random state’s q-order moment has the
following asymptotics: Eρ∼µd,d

[
Tr(ρq)

]
=

d→+∞
d1−q Γ(1+2q)

Γ(1+q)Γ(2+q)

(
1 +O

(
1
d

))
.

E Some properties of a family of norms

We consider here the case when H = H1 ⊗ · · · ⊗HK ≡
(
Cd
)⊗K .

For all p ∈ N∗, we define the norm ‖ · ‖p[K] on H(H) by:

∀ ∆ ∈ H(H), ‖∆‖p[K] :=

∫
|ψi〉∈Hi, 〈ψi|ψi〉=1

1≤i≤K

∣∣Tr
(
|ψ1〉〈ψ1| ⊗ · · · ⊗ |ψK〉〈ψK |∆

)∣∣pdψ1 . . . dψK


1/p

We may point out in particular that the norm ‖ · ‖2[K] is related to the “modified K-partite 2-norm”

‖ · ‖2(K) :=
√ ∑
I⊂{1,...,K}

TrH\HI
[(

TrHI [·]
)2] by: ‖ · ‖2[K] = 1[

d(d+1)
]K/2 ‖ · ‖2(K).
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E.1 Special case p = 2q even

Theorem E.1 For all q ∈ N∗ and all ∆ ∈ H(H):

‖∆‖2q[K] ≤
(

dq(d+ 1)q

d× · · · × (d+ 2q − 1)
(2q)!

)K/2q
‖∆‖2[K] ∼

q→∞

(
2q
e

)K
‖∆‖2[K]

Let us notice that, setting Uσ :=
K⊗
i=1
Uσi for every K-tuple σ = (σ1, . . . , σK) ∈ SK

2q, we have:

(
‖∆‖2q[K]

)2q =
1[

d× · · · × (d+ 2q − 1)
]K TrH⊗2q


 ∑
σ∈SK

2q

Uσ

∆⊗2q


Hence, the only thing we actually have to show in order to prove theorem E.1 is:

TrH⊗2q


 ∑
σ∈SK

2q

Uσ

∆⊗2q

 ≤ ((2q)!)K‖∆‖2q2(K) (15)

And since SK
2q contains

(
(2q)!

)K elements, equation 15 may be obtained by simply showing that, for
all σ ∈ SK

2q, defining t(σ) :=
∣∣TrH⊗2q

(
Uσ∆⊗2q

)∣∣, we have:

t(σ) ≤ max
I⊂{1,...,K}

[
TrH\HI (TrHI∆)2

]q
≤

∑
I⊂{1,...,K}

[
TrH\HI (TrHI∆)2

]q
≤

 ∑
I⊂{1,...,K}

TrH\HI (TrHI∆)2

q (16)

and then suming over SK
2q.

E.1.1 Special case q = 2

Since we cannot proceed by inspection of the 24K K-tuples of SK
4 , our first task will be to find a way

of restricting our attention to only a few elements of S4 without any loss of generality. In that end,
our strategy can be described as follows.

Let M1,M2,M3,M4 ∈ H(H) and σ ∈ S4. We write: TrH⊗4

(
Uσ(M1⊗M2⊗M3⊗M4)

)
= TrH⊗4(XY †),

with X,Y ∈ H(H⊗4) such that ∃ σ′, σ′′ ∈ S4 :

{
TrH⊗4(XX†) = TrH⊗4

(
Uσ′(M1 ⊗M2 ⊗M2 ⊗M1)

)
TrH⊗4(Y Y †) = TrH⊗4

(
Uσ′′(M4 ⊗M3 ⊗M3 ⊗M4)

) .

In order to easily visualize into which pair (σ′, σ′′) ∈ S4 ×S4 each σ ∈ S4 splits, we can make use of
Penrose’s ingenious tensor diagrams (introduced first in [33]), which we briefly explain here:

Let M ∈ H(H) and |i〉, |j〉 ∈ H. We represent the matrix element 〈i|M |j〉 by a diagram with terminals:

Then, summing matrix elements for a unit vector running through an orthonormal basis of H is
represented by joining the corresponding terminals.

Hence for instance, TrH(M) =
∑
j
〈j|M |j〉 is represented by:
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And in the same way, 〈i|MN |k〉 =
∑
j
〈i|M |j〉〈j|N |k〉 is represented by:

Yet, for any M1,M2,M3,M4 ∈ H(H) and σ ∈ S4, we have:
TrH⊗4

(
Uσ(M1 ⊗M2 ⊗M3 ⊗M4)

)
=

∑
i1,i2,i3,i4

〈i1|M1|iσ(1)〉〈i2|M2|iσ(2)〉〈i3|M3|iσ(3)〉〈i4|M4|iσ(4)〉

So for example, TrH⊗4

(
U(123)(M1⊗M2⊗M3⊗M4)

)
is represented by:

And in this case, the splitting procedure described above can be schematically represented by:

−→

which means that σ = (123) splits into σ′ = (1234) and σ′′ = (23)

What we have gained by doing so is that σ′ and σ′′ cannot be any permutation: they necessarily belong
to the subset S4 := {id, (14), (23), (1234), (1432), (12)(34), (14)(23)} of S4 containing the permutations
that are equal to their opposite under the exchange 1 ↔ 4 and 2 ↔ 3 (i.e. under the conjugation by
(14)(23)).

We now have to see more precisely in which pair (σ′, σ′′) ∈ S4×S4 each of the elements σ ∈ S4 breaks
down. First of all, it is clear that the seven elements of S4 split into twice themselves. Similarly, if
σ splits into (σ′, σ′′), then its conjugate (14)(23)σ(14)(23) splits into (σ′′, σ′). We are thus left with
actually looking at 9 permutations, one of which being invariant under the conjugation by (14)(23)
and the 8 others providing the result for their 8 respective conjugates by switching σ′ and σ′′. The
resulting splitting map Split : σ ∈ S4 7→ (σ′, σ′′) ∈ S4 × S4 for each σ ∈ S4 can then easily be
constructed and looked up in the table of Figure 6.

Let us now turn back to the problem we are dealing with. Let σ = (σ1, . . . , σK) ∈ SK
4 . Applying the

splitting map S4 → S4 ×S4 to all the σi, 1 ≤ i ≤ K, and then using the Cauchy-Schwarz inequality
and the arithmetic-geometric mean inequality, we get:

t(σ) =
∣∣TrH⊗4

(
Uσ∆⊗4

)∣∣ ≤√|TrH⊗4 (Uσ′∆⊗4)| |TrH⊗4 (Uσ′′∆⊗4)| =
√
t(σ′)t(σ′′) ≤ 1

2
t(σ′) +

1
2
t(σ′′)(17)

Now, since ∆⊗4 is invariant under conjugation by elements of the form (Uσ)⊗K , σ ∈ S4, it holds that
t is invariant under conjugation by elements from the subgroup G := {(σ, . . . , σ), σ ∈ S4} of SK

4 .
Yet, we can notice that the subset S̃4 of S4 defined by S̃4 := {id, (12)(34), (14)(23)} is such that:

• ∀ σ ∈ S̃K
4 , ∀ς ∈ G, Split(ςσς−1) ∈ S̃K

4 × S̃K
4

• ∀ σ ∈ S
K
4 , ∃ k ∈ N∗, ∃ ς1, . . . , ςk ∈ G : Split(ςk · · · Split(ς1σς−1

1 ) · · · ςk) ∈
(
S̃K

4

)2k
Thus, using equation 17, we see that for any σ ∈ SK

4 , by repeatedly conjugating by elements of G
and splitting, we get in the end the upper bound t(σ) ≤

∑
α
pαt(σ(α)), with certain pα = 1

2kα
that sum

to 1, and the σ(α) that belong to S̃K
4 . Hence eventually:

∀ σ ∈ SK
4 , t(σ) ≤ max

π∈S̃K
4

t(π) (18)

In order to upper bound the traces on the right hand side of equation 18, let us deal with the following
auxiliary problem.
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Conjugacy class σ σ′ σ′′

(14) id id id
(21, 12) (12) (12)(34) id

(13) (14) (23)
(14) (14) (14)
(23) (23) (23)
(24) (23) (14)
(34) id (12)(34)

(22) (12)(34) (12)(34) (12)(34)
(13)(24) (14)(23) (14)(23)
(14)(23) (14)(23) (14)(23)

(31, 11) (123) (1234) (23)
(132) (1432) (23)
(124) (1234) (14)
(142) (1432) (14)
(134) (14) (1234)
(143) (14) (1432)
(234) (23) (1234)
(243) (23) (1432)

(41) (1234) (1234) (1234)
(1243) (1234) (1432)
(1324) (14)(23) (14)(23)
(1342) (1432) (1234)
(1432) (1432) (1432)
(1423) (14)(23) (14)(23)

Figure 6: Table of the splitting map Split : S4 −→ S4 ×S4, Split(σ) = (σ′, σ′′), grouped according
to conjugacy classes of σ.

Let H = A ⊗ B ⊗ C be a finite dimensional 3-partite Hilbert space. For all P ∈ H(H) and all
|a〉, |a′〉 ∈ A, |b〉, |b′〉 ∈ B and |c〉, |c′〉 ∈ C we set P a

′,b′,c′

a,b,c := 〈c| ⊗ 〈b| ⊗ 〈a|P |a′〉 ⊗ |b′〉 ⊗ |c′〉.

Let σ = (σA, σB, σC) ∈ S3
4 be a 3-tuple of permutations. For all ∆ ∈ H(H), we have, with the |aq〉,

|bq〉 and |cq〉, 1 ≤ q ≤ 4, respectively running through an orthonormal basis of A, B and C:

TrH⊗4

(
(UσA ⊗ UσB ⊗ UσC )∆⊗4

)
=

∑
a1,b1,c1
a2,b2,c2
a3,b3,c3
a4,b4,c4

4∏
q=1

∆
aσA(q),aσB(q),cσC (q)

aq ,bq ,cq

We now consider the particular case σA = id, σB = (12)(34) and σC = (14)(23), in which we have:

TrH⊗4

(
(UσA ⊗ UσB ⊗ UσC )∆⊗4

)
=

∑
a1,b1,c1
a2,b2,c2
a3,b3,c3
a4,b4,c4

∆a1b2c4
a1b1c1

∆a2b1c3
a2b2c2

∆a3b4c2
a3b3c3

∆a4b3c1
a4b4c4

=
∑
b1,c1
b2,c2
b3,c3
b4,c4

[
TrA∆

]b2,c4
b1,c1

[
TrA∆

]b1,c3
b2,c2

[
TrA∆

]b4,c2
b3,c3

[
TrA∆

]b3,c1
b4,c4
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Let us introduce the maximally entangled matrix on C ⊗ C: MC⊗C :=
∑
c,c̃

|c〉 ⊗ |c〉〈c̃| ⊗ 〈c̃|.

Now, let R := (TrA∆⊗ 1C)(1B ⊗MC⊗C)(TrA∆⊗ 1C).
We notice that, for all b, b′, c, c′, c̃, c̃′: Rb

′,c′,c̃′

b,c,c̃ =
∑
b′′

[
TrA∆

]b′′,c̃
b,c

[
TrA∆

]b′,c′
b′′,c̃′

.

So that: TrH⊗4

(
(UσA ⊗ UσB ⊗ UσC )∆⊗4

)
=

∑
b1,b3

c1,c2,c3,c4

Rb1,c2,c3b1,c1,c4
Rb3,c1,c4b3,c2,c3

= TrC⊗C
(
TrBR

)2.

Yet, defining P :=
(
TrA∆ ⊗ 1C

)(
1B ⊗

∑
c
|c〉 ⊗ |c〉

)
, we see that R = PP †. Hence R is a positive

matrix, and so is TrBR. Thus, using the fact that, for a positive matrix V , Tr
(
V 2
)
≤
(
TrV

)2, we get:

TrC⊗C
(
TrBR

)2 ≤ [TrB⊗C⊗CR
]2 =

[
TrB⊗C

(
TrA∆

)2]2
.

So eventually: TrH⊗4

(
(UσA ⊗ UσB ⊗ UσC )∆⊗4

)
≤
[
TrH\A (TrA∆)2

]2
.

We can now turn back to our initial problem.
For all π ∈ S̃K

4 , we can define the following factors of the global Hilbert space H:

• A(π) := Hi1 ⊗ · · · ⊗Hia with πi1 , . . . , πia = id
• B(π) := Hia+1 ⊗ · · · ⊗Hib with πia+1 , . . . , πib = (12)(34)
• C(π) := Hib+1

⊗ · · · ⊗HiK with πib+1
, . . . , πiK = (14)(23)

H can then be written as: H = A(π)⊗ B(π)⊗ C(π).

And hence: t(π) =
∣∣TrH⊗4

(
Uπ∆⊗4

)∣∣ ≤ [TrH\A(π)

(
TrA(π)∆

)2]2
≤ max

I⊂{1,...,K}

[
TrH\HI (TrHI∆)2

]2
.

Plugging this result in equation 18, we get equation 16 as wanted.

E.1.2 General case q ≥ 2

We may now extend the method used above. Let us define the following subset of S2q, containing the
identity and the permutations made of q disjoint transpositions that are invariant under the exchange

j ↔ 2q+1−j, 1 ≤ j ≤ q, i.e. under the conjugation by the product of transpositions
q∏
j=1

(j, 2q+1−j):

S̃2q :=

{
id,

p∏
k=1

(ik, i′k)(2q + 1− ik, 2q + 1− i′k)
m∏
l=1

(jl, 2q + 1− jl), 2p+m = q, 1 ≤ ik, i′k, jl ≤ q

}
Just as in the special case q = 2, letting G := {(σ, . . . , σ), σ ∈ S2q}, we have that conjugating an
element of S̃K

2q by an element of G and then splitting gives two elements of S̃K
2q, and that any element

of SK
2q can be transformed into a tuple of elements of S̃K

2q by repeatedly conjugating by elements of
G and splitting.
Thus, by repeated use of the Cauchy-Schwarz inequality and arithmetic-geometric mean inequality,
we get that for all σ ∈ SK

2q:
∣∣TrH⊗2q

(
Uσ∆⊗2q

)∣∣ ≤ ∑
α
pα
∣∣TrH⊗2q

(
Uσ(α)∆⊗2q

)∣∣, with certain pα = 1
2kα

that sum to 1, and the σ(α) that belong to S̃K
2q. Hence in the end:

∀ σ ∈ SK
2q,

∣∣TrH⊗2q

(
Uσ∆⊗2q

)∣∣ ≤ max
π∈S̃K

2q

∣∣TrH⊗2q

(
Uπ∆⊗2q

)∣∣ (19)

Yet, once again similarly to the special case q = 2, for all π ∈ S̃K
2q, we have the upper bound:∣∣TrH⊗2q

(
Uπ∆⊗2q

)∣∣ ≤ max
I⊂{1,...,K}

[
TrH\HI (TrHI∆)2

]q
, which, plugged into equation 19, gives equation

16 as desired.
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E.2 General case p ≥ 2

Theorem E.1 relates the norm ‖ ·‖p[K] to the norm ‖ ·‖2[K] whenever p is even. One might now wonder
what can be said for p odd.
Yet, by Hölder’s inequality, we have:

∀ p, q, r ∈ N∗, 1
p

+
1
q

=
1
r
, ∀ ∆ ∈ H(H), ‖1∆‖r[K] ≤ ‖1‖p[K]‖∆‖q[K] i.e. ‖∆‖r[K] ≤ ‖∆‖q[K]

Thus: ∀ p ≤ p′ ∈ N∗, ∀ ∆ ∈ H(H), ‖∆‖p[K] ≤ ‖∆‖p′[K].
Combining this monotonicity result for p 7→ ‖ · ‖p[K] to theorem E.1, we finally get:

Theorem E.2 For all q ∈ N∗ and all ∆ ∈ H(H):

‖∆‖2q−1[K] ≤ ‖∆‖2q[K] ≤
(

dq(d+ 1)q

d× · · · × (d+ 2q − 1)
(2q)!

)K/2q
‖∆‖2[K] ∼

q→∞

(
2q
e

)K
‖∆‖2[K]

Remark E.3 It is actually possible to relate the norm ‖ · ‖p[K], p ≥ 2, to the norm ‖ · ‖2[K] by a
completely different approach described in [43]. Indeed, using a hypercontractive inequality of Beckner,
one gets that for all p ≥ 2 and all ∆ ∈ H(H):

‖∆‖p[K] ≤ (p− 1)K‖∆‖2[K]

This upper bound is however asymptotically worse than the one obtained by the method described above.

These norms occur in many other issues related to quantum information theory than the one of
distinguishing quantum states. One example amongst others appears in [44], with the description of
a test which tells whether or not a multi-partite quantum state is a product state. The probability of
acceptance of the generalized 2q-copy product test on the K-partite state ρ described there is:

P(2q,K)(ρ) :=
(
d× · · · × (d+ 2q − 1)

(2q)!

)K (
‖ρ‖2q[K]

)2q
Using theorem E.1, the latter can be directly related to the probability of acceptance of the generalized
2-copy product test on the K-partite state ρ:

P(2q,K)(ρ) ≤
(

2q
d× · · · × (d+ 2q − 1)

dq(d+ 1)q

)K
P(2,K)(ρ) ≤

[
(2q)!

]K
P(2,K)(ρ)
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[29] A.M. Childs, D. Leung, L. Mančinska, M. Ozols, “A framework for bounding nonlocality
of state discrimination”;arXiv:1206.5822[quant-ph] (2012).
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