Quantum expanders – Random constructions & Applications

Based on the works:

- arXiv:1906.11682 (with David Pérez-Garcìa)
 - arXiv:2302.07772 (with Pierre Youssef)
 - arXiv:2409.17971

Cécilia Lancien

Institut Fourier Grenoble & CNRS

QMATH 16 (Random Systems Session) - September 1 2025

Plan

- Classical and quantum expanders: definitions and motivations
- Random constructions of expanders
- Applications and perspectives

Classical expanders

G a (directed or undirected) d-biregular graph on n vertices.

→ *d* incoming and *d* outgoing edges at each vertex

A its (normalized) adjacency matrix, i.e. the $n \times n$ matrix s.t. $A_{kl} = e(l \rightarrow k)/d$ for all $1 \le k, l \le n$. number of edges from vertex l to vertex $k \blacktriangleleft$

 $\lambda_1(A), \dots, \lambda_n(A)$ eigenvalues of A, ordered s.t. $|\lambda_1(A)| \geqslant \dots \geqslant |\lambda_n(A)|$.

G biregular \Rightarrow *A* bistochastic \Rightarrow $\lambda_1(A) = 1$, with associated eigenvector the uniform probability *u*. The *spectral expansion parameter* of *G* is $\lambda(G) := |\lambda_2(A)|$. (1/n,...,1/n) = 4

Observation: $\lambda(G) = |\lambda_1(A - J)|$, where J is the adjacency matrix of the *complete graph* on n vertices, i.e. the $n \times n$ matrix whose entries are all equal to 1/n.

 $\longrightarrow \lambda(G)$ is a distance measure between G and the complete graph.

Classical expanders

G a (directed or undirected) d-biregular graph on n vertices.

□ d incoming and d outgoing edges at each vertex

A its (normalized) adjacency matrix, i.e. the $n \times n$ matrix s.t. $A_{kl} = e(l \rightarrow k)/d$ for all $1 \le k, l \le n$. number of edges from vertex l to vertex $k \leftarrow$

 $\lambda_1(A), \ldots, \lambda_n(A)$ eigenvalues of A, ordered s.t. $|\lambda_1(A)| \ge \cdots \ge |\lambda_n(A)|$.

G biregular \Rightarrow A bistochastic $\Rightarrow \lambda_1(A) = 1$, with associated eigenvector the uniform probability u. The spectral expansion parameter of G is $\lambda(G) := |\lambda_2(A)|$. $(1/n,\ldots,1/n)=\blacktriangleleft$

Observation: $\lambda(G) = |\lambda_1(A - J)|$, where *J* is the adjacency matrix of the *complete graph* on *n* vertices, i.e. the $n \times n$ matrix whose entries are all equal to 1/n.

 $\longrightarrow \lambda(G)$ is a distance measure between G and the complete graph.

Definition [Classical expander (informal)]

A d-biregular graph G on n vertices is an expander if it is sparse (i.e. $d \ll n$) and spectrally expanding (i.e. $\lambda(G) \ll 1$).

 \longrightarrow G is both 'economical' and 'resembling' the complete graph.

For instance, a random walk supported on G converges fast to equilibrium:

For any probability p on $\{1,\ldots,n\}$, $\forall q \in \mathbb{N}$, $||A^qp-u||_1 \leq \sqrt{n}\lambda(G)^q$.

 \rightarrow exponential convergence, at rate $|\log \lambda(G)|$

Quantum analogue of the transition matrix associated to a biregular graph

Classical - Quantum correspondence:

- $p \in \mathbf{R}^n$ probability vector $\iff \rho \in \mathcal{M}_n(\mathbf{C})$ quantum state. • self-adjoint positive semidefinite trace 1 matrix
- $A: \mathbf{R}^n \to \mathbf{R}^n$ transition matrix $\longleftrightarrow \Phi: \mathcal{M}_n(\mathbf{C}) \to \mathcal{M}_n(\mathbf{C})$ quantum channel.

 Let L completely positive (CP) trace-preserving (TP) linear map
- *G* biregular: *A* leaves *u* invariant $\longleftrightarrow \Phi$ unital: Φ leaves I/n invariant.

Quantum analogue of the transition matrix associated to a biregular graph

Classical - Quantum correspondence:

• $p \in \mathbf{R}^n$ probability vector $\iff \rho \in \mathcal{M}_n(\mathbf{C})$ quantum state.

self-adjoint positive semidefinite trace 1 matrix

• $A: \mathbf{R}^n \to \mathbf{R}^n$ transition matrix $\longleftrightarrow \Phi: \mathcal{M}_n(\mathbf{C}) \to \mathcal{M}_n(\mathbf{C})$ quantum channel.

Let L completely positive (CP) trace-preserving (TP) linear map

• *G* biregular: *A* leaves *u* invariant $\longleftrightarrow \Phi$ unital: Φ leaves I/n invariant.

Question: What is the analogue of the degree in the quantum setting?

Answer: The Kraus rank.

Given a CP map Φ on $\mathcal{M}_n(\mathbf{C})$, a Kraus representation of Φ is of the form:

$$\Phi: X \in \mathcal{M}_n(\mathbf{C}) \mapsto \sum_{i=1}^d K_i X K_i^* \in \mathcal{M}_n(\mathbf{C}), \text{ where } K_1, \dots, K_d \in \mathcal{M}_n(\mathbf{C}). \quad (\star)$$

$$\downarrow \quad \text{Kraus operators of } \Phi$$

The minimal d s.t. Φ can be written as (\star) is the *Kraus rank* of Φ (it is always at most n^2).

[Note:
$$\Phi$$
 is TP iff $\sum_{i=1}^{d} K_i^* K_i = I$. Φ is unital iff $\sum_{i=1}^{d} K_i K_i^* = I$.]

Indeed, the degree and the Kraus rank both quantify the 1-iteration spreading:

- G a degree d graph: If $|\operatorname{supp}(p)| = 1$, then $|\operatorname{supp}(Ap)| \leq d$.
- Φ a Kraus rank d quantum channel: If $rank(\rho) = 1$, then $rank(\Phi(\rho)) \leq d$.

Quantum expanders

 Φ a Kraus rank d unital quantum channel on $\mathcal{M}_n(\mathbf{C})$.

$$\lambda_1(\Phi),\dots,\lambda_{n^2}(\Phi) \text{ eigenvalues of } \Phi, \text{ ordered s.t. } |\lambda_1(\Phi)| \geqslant \dots \geqslant |\lambda_{n^2}(\Phi)|.$$

 Φ TP and unital $\Rightarrow \lambda_1(\Phi) = 1$, with associated eigenstate the maximally mixed state I/n. The spectral expansion parameter of Φ is $\lambda(\Phi) := |\lambda_2(\Phi)|$.

Observation: $\lambda(\Phi) = |\lambda_1(\Phi - \Pi)|$, where Π is the maximally mixing channel on $\mathcal{M}_n(\mathbf{C})$, i.e.

 $\Pi: X \in \mathcal{M}_n(\mathbf{C}) \mapsto \operatorname{Tr}(X) I/n \in \mathcal{M}_n(\mathbf{C}).$

 $\longrightarrow \lambda(\Phi)$ is a distance measure between Φ and the maximally mixing channel.

Quantum expanders

- Φ a Kraus rank d unital quantum channel on $\mathcal{M}_n(\mathbf{C})$.
- $\lambda_1(\Phi), \dots, \lambda_{n^2}(\Phi) \text{ eigenvalues of } \Phi, \text{ ordered s.t. } |\lambda_1(\Phi)| \geqslant \dots \geqslant |\lambda_{n^2}(\Phi)|.$
- Φ TP and unital $\Rightarrow \lambda_1(\Phi) = 1$, with associated eigenstate the maximally mixed state I/n. The spectral expansion parameter of Φ is $\lambda(\Phi) := |\lambda_2(\Phi)|$.
- **Observation:** $\lambda(\Phi) = |\lambda_1(\Phi \Pi)|$, where Π is the maximally mixing channel on $\mathcal{M}_n(\mathbf{C})$, i.e.
- $\Pi: X \in \mathcal{M}_n(\mathbf{C}) \mapsto \operatorname{Tr}(X) I/n \in \mathcal{M}_n(\mathbf{C}).$
- $\longrightarrow \lambda(\Phi)$ is a distance measure between Φ and the maximally mixing channel.

Definition [Quantum expander (informal)]

A Kraus rank d unital quantum channel Φ on $\mathcal{M}_n(\mathbf{C})$ is an *expander* if it is sparse (i.e. $d \ll n^2$) and spectrally expanding (i.e. $\lambda(\Phi) \ll 1$).

- $\longrightarrow \Phi$ is both 'economical' and 'resembling' the maximally mixing channel.
- For instance, the dynamics associated to Φ converges fast to equilibrium:
- For any state ρ on \mathbf{C}^n , $\forall \ q \in \mathbf{N}, \ \|\Phi^q(\rho) I/n\|_1 \leqslant \sqrt{n}\lambda(\Phi)^q$.
 - \rightarrow exponential convergence, at rate $|\log \lambda(\Phi)|$

Plan

- Classical and quantum expanders: definitions and motivations
- Random constructions of expanders
- Applications and perspectives

Optimal expanders: definition and constructions in the classical case

(or
$$2\sqrt{d-1}/d$$
 for G undirected)

Fact: For any *d*-biregular graph *G* on *n* vertices, $\lambda(G) \ge 1/\sqrt{d} - o_n(1)$.

 \longrightarrow G is an optimal classical expander (aka Ramanujan graph) if $\lambda(G) \leqslant 1/\sqrt{d}$.

Question: Do Ramanujan graphs exist?

- Explicit constructions of exactly Ramanujan graphs only for $d = p^m + 1$, p prime.
- Random constructions of almost Ramanujan graphs for all d. More precisely: for large n, almost all d-biregular graphs are almost Ramanujan (Friedman, Bordenave).
- Existence of exactly Ramanujan graphs for all d.

Optimal expanders: definition and constructions in the classical case

(or
$$2\sqrt{d-1}/d$$
 for G undirected)

Fact: For any *d*-biregular graph *G* on *n* vertices, $\lambda(G) \ge 1/\sqrt{d} - o_n(1)$.

 $\longrightarrow G$ is an optimal classical expander (aka *Ramanujan graph*) if $\lambda(G) \leqslant 1/\sqrt{d}$.

Question: Do Ramanujan graphs exist?

- Explicit constructions of exactly Ramanujan graphs only for $d = p^m + 1$, p prime.
- Random constructions of almost Ramanujan graphs for all d. More precisely: for large n, almost all d-biregular graphs are almost Ramanujan (Friedman, Bordenave).
- Existence of exactly Ramanujan graphs for all d.

(or
$$2\sqrt{d-1}/d$$
 for Φ self-adjoint)

Fact: For any Kraus rank d unital quantum channel Φ on $\mathcal{M}_n(\mathbf{C})$, $\lambda(\Phi) \geqslant 1/\sqrt{d} - o_n(1)$.

 $\longrightarrow \Phi$ is an optimal quantum expander if $\lambda(\Phi) \leq 1/\sqrt{d}$.

Question: Do optimal quantum expanders exist?

First attempts at exhibiting explicit constructions (inspired by classical ones): not optimal.

— What about random constructions?

 $\textbf{Strategy:} \ \mathsf{Pick} \ \mathcal{K}_1, \dots, \mathcal{K}_d \in \mathcal{M}_n(\mathbf{C}) \ \mathsf{at} \ \mathsf{random,} \ \mathsf{under} \ \mathsf{the} \ \mathsf{constraints} \ \begin{cases} \sum_{i=1}^d \mathcal{K}_i^* \mathcal{K}_i = I \\ \sum_{i=1}^d \mathcal{K}_i \mathcal{K}_i^* = I \end{cases} .$

 $\Phi: X \mapsto \sum_{i=1}^{d} K_i X K_i^*$ is a random Kraus rank (at most) d unital quantum channel on $\mathcal{M}_n(\mathbf{C})$.

Constructions of optimal expanders in the quantum case

Theorem [Haar unitaries as Kraus operators (Hastings, Pisier, Timhadjelt)]

Pick $U_1, \ldots, U_d \in \mathcal{M}_n(\mathbf{C})$ independent Haar unitaries. Let $K_i = U_i / \sqrt{d}$, $1 \le i \le d$.

The unital quantum channel Φ associated to the K_i 's satisfies:

$$\forall \; \epsilon > 0, \; \mathbf{P}\left(\lambda(\Phi) \leqslant \frac{1}{\sqrt{d}}(1+\epsilon)\right) \geqslant 1 - e^{-c\epsilon n^{1/12}}, \; \text{where} \; c > 0 \; \text{is an absolute constant}.$$

Constructions of optimal expanders in the quantum case

Theorem [Haar unitaries as Kraus operators (Hastings, Pisier, Timhadjelt)]

Pick $U_1, \ldots, U_d \in \mathcal{M}_n(\mathbf{C})$ independent Haar unitaries. Let $K_i = U_i/\sqrt{d}$, $1 \leqslant i \leqslant d$.

The unital quantum channel Φ associated to the K_i 's satisfies:

$$\forall \ \epsilon > 0, \ \mathbf{P}\left(\lambda(\Phi) \leqslant \frac{1}{\sqrt{d}}(1+\epsilon)\right) \geqslant 1 - e^{-c\epsilon n^{1/12}}, \ \text{where } c > 0 \ \text{is an absolute constant}.$$

Question: Does this remain true for 'less random' unitary Kraus operators?

A measure
$$\mu$$
 on $U(n)$ is a k -design if $\mathbf{E}_{U \sim \mu}[U^{\otimes k}(\cdot)U^{*\otimes k}] = \mathbf{E}_{U \sim \mu_H}[U^{\otimes k}(\cdot)U^{*\otimes k}]$.
 \downarrow Haar measure on $U(n)$

Theorem [2-design unitaries as Kraus operators (Lancien)]

Pick $U_1,\ldots,U_d\in\mathcal{M}_n(\mathbf{C})$ independent 2-design unitaries. Let $K_i=U_i/\sqrt{d},\,1\leqslant i\leqslant d$. If $d\geqslant (\log n)^{8+\delta}$ for some $\delta>0$, the unital quantum channel Φ associated to the K_i 's satisfies:

$$\mathbf{P}\left(\lambda(\Phi) \leqslant \frac{2}{\sqrt{d}}\left(1 + \frac{C}{(\log n)^{\delta/6}}\right)\right) \geqslant 1 - \frac{1}{n}, \text{ where } C < \infty \text{ is an absolute constant.}$$

Interest: Nearly optimal quantum expander from random Kraus operators which are sampled according to a simple measure on the unitary group (uniform measure on explicit finite subset).

Constructions of optimal expanders in the quantum case

Theorem [Haar unitaries as Kraus operators (Hastings, Pisier, Timhadjelt)]

Pick $U_1, \ldots, U_d \in \mathcal{M}_n(\mathbf{C})$ independent Haar unitaries. Let $K_i = U_i / \sqrt{d}$, $1 \leqslant i \leqslant d$.

The unital quantum channel Φ associated to the K_i 's satisfies:

$$\forall \ \epsilon > 0, \ \mathbf{P}\left(\lambda(\Phi) \leqslant \frac{1}{\sqrt{d}}(1+\epsilon)\right) \geqslant 1 - e^{-c\epsilon n^{1/12}}, \ \text{where } c > 0 \ \text{is an absolute constant}.$$

Question: Does this remain true for 'less random' unitary Kraus operators?

A measure
$$\mu$$
 on $U(n)$ is a k -design if $\mathbf{E}_{U \sim \mu}[U^{\otimes k}(\cdot)U^{*\otimes k}] = \mathbf{E}_{U \sim \mu_H}[U^{\otimes k}(\cdot)U^{*\otimes k}]$.
 \downarrow Haar measure on $U(n)$

Theorem [2-design unitaries as Kraus operators (Lancien)]

Pick $U_1,\ldots,U_d\in\mathcal{M}_n(\mathbf{C})$ independent 2-design unitaries. Let $K_i=U_i/\sqrt{d},\,1\leqslant i\leqslant d$. If $d\geqslant (\log n)^{8+\delta}$ for some $\delta>0$, the unital quantum channel Φ associated to the K_i 's satisfies:

$$\mathbf{P}\left(\lambda(\Phi)\leqslant \frac{2}{\sqrt{d}}\left(1+\frac{C}{(\log n)^{\delta/6}}\right)\right)\geqslant 1-\frac{1}{n}, \text{ where } C<\infty \text{ is an absolute constant.}$$

Interest: Nearly optimal quantum expander from random Kraus operators which are sampled according to a simple measure on the unitary group (uniform measure on explicit finite subset).

Remark: Similar results for Kraus operators sampled as (renormalized) Gaussian matrices (Lancien/Pérez-García) or sparse matrices with arbitrary independent entries (Lancien/Youssef).

Proof idea to show that $\mathbf{E}\lambda(\Phi) \leqslant 2/\sqrt{d}$

$$ightharpoonup$$
 = $\mathbf{E}(\Phi)$

Goal: Upper bound $\mathbf{E}[\lambda_2(\Phi)] = \mathbf{E}[\lambda_1(\Phi - \Pi)]$, where $\Pi : X \in \mathcal{M}_n(\mathbf{C}) \mapsto \mathrm{Tr}(X) I/n \in \mathcal{M}_n(\mathbf{C})$. (Next: Concentration of measure to show that $\lambda(\Phi)$ is typically close to $\mathbf{E}\lambda(\Phi)$...)

Observations:

- $\bullet |\lambda_1(\Psi)| \leqslant s_1(\Psi) = \|\Psi\|_{\infty}.$
- $\|\Psi\|_{\infty} = \|M_{\Psi}\|_{\infty}$, where for $\Psi : X \mapsto \sum_{i=1}^d K_i X L_i^*$, $M_{\Psi} = \sum_{i=1}^d K_i \otimes \overline{L}_i$.

[Identification $\Psi:\mathcal{M}_n(\mathbf{C}) \to \mathcal{M}_n(\mathbf{C}) \equiv M_\Psi: \mathbf{C}^n \otimes \mathbf{C}^n \to \mathbf{C}^n \otimes \mathbf{C}^n$ preserves the operator norm.]

$$\longrightarrow$$
 Upper bound $\mathbf{E} \| \underbrace{M_{\Phi} - \mathbf{E}(M_{\Phi})}_{} \|_{\infty}$, where $M_{\Phi} = \sum_{i=1}^{d} K_i \otimes \bar{K}_i$.

$$\downarrow$$
 = U_i/\sqrt{d} for U_i random unitary

Proof idea to show that $\mathbf{E}\lambda(\Phi) \leq 2/\sqrt{d}$

$$ightharpoonup$$
 = $\mathbf{E}(\Phi)$

Goal: Upper bound $E[\lambda_2(\Phi)] = E[\lambda_1(\Phi - \Pi)]$, where $\Pi: X \in \mathcal{M}_n(\mathbf{C}) \mapsto Tr(X)I/n \in \mathcal{M}_n(\mathbf{C})$. (Next: Concentration of measure to show that $\lambda(\Phi)$ is typically close to $\mathbf{E}\lambda(\Phi)...$)

Observations:

- $\bullet |\lambda_1(\Psi)| \leqslant s_1(\Psi) = ||\Psi||_{\infty}.$
- $\|\Psi\|_{\infty} = \|M_{\Psi}\|_{\infty}$, where for $\Psi: X \mapsto \sum_{i=1}^d K_i X L_i^*$, $M_{\Psi} = \sum_{i=1}^d K_i \otimes \overline{L}_i$.

Identification $\Psi: \mathcal{M}_n(\mathbf{C}) \to \mathcal{M}_n(\mathbf{C}) \equiv M_{\Psi}: \mathbf{C}^n \otimes \mathbf{C}^n \to \mathbf{C}^n \otimes \mathbf{C}^n$ preserves the operator norm.

→ Upper bound $\mathbf{E} \| \underbrace{M_{\Phi} - \mathbf{E}(M_{\Phi})}_{-:\mathbf{V}} \|_{\infty}$, where $M_{\Phi} = \sum_{i=1}^{d} K_i \otimes \bar{K}_i$. $\downarrow_{\mathbf{F}} = U_i$

$\rightarrow = U_i / \sqrt{d}$ for U_i random unitary

Implementation:

- For Haar unitaries, this can be done by a moments' method:
- By Jensen's inequality, we have: $\forall p \in \mathbb{N}, E||X||_{\infty} \leq E||X||_{p} \leq (E \operatorname{Tr}|X|^{p})^{1/p}$.
- \longrightarrow Estimate the r.h.s. by Weingarten calculus and choose $p = p_{n,d}$ that minimizes it.
- For 2-design unitaries, we use recent operator norm estimates for random matrices with dependencies and non-homogeneity (Brailovskaya/van Handel):
- Setting $X = \sum_{i=1}^{d} Z_i$, with $Z_i := K_i \otimes \bar{K}_i \mathbf{E}(K_i \otimes \bar{K}_i)$, $1 \le i \le d$, we have:

$$\mathbf{E}\|X\|_{\infty} \leqslant \|\mathbf{E}(XX^*)\|_{\infty}^{1/2} + \|\mathbf{E}(X^*X)\|_{\infty}^{1/2} + C(\log n)^{6} \Big(\|\mathbf{Cov}(X)\|_{\infty}^{1/2} + \Big(\mathbf{E}\max_{1 \leqslant i \leqslant d} \|Z_i\|_{\infty}^{2}\Big)^{1/2}\Big).$$

---> Estimate all parameters appearing on the r.h.s.

Plan

- Classical and quantum expanders: definitions and motivations
- Random constructions of expanders
- Applications and perspectives

Implications for typical decay of correlations in many-body quantum systems

Matrix product states (MPS) form a subset of many-body quantum states.

They are particularly useful because:

- They admit an efficient description: number of parameters that scales linearly rather than exponentially with the number of subsytems.
- They are good approximations of several 'physically relevant' states, such as ground states of gapped local Hamiltonians on 1D systems (Hastings, Landau/Vazirani/Vidick).
 - composed of terms which act non-trivially only on nearby sites spectral gap lower bounded by a constant independent of the number of subsystems

Implications for typical decay of correlations in many-body quantum systems

Matrix product states (MPS) form a subset of many-body quantum states.

They are particularly useful because:

- They admit an efficient description: number of parameters that scales linearly rather than
 exponentially with the number of subsytems.
- They are good approximations of several 'physically relevant' states, such as ground states
 of gapped local Hamiltonians on 1D systems (Hastings, Landau/Vazirani/Vidick).
 - composed of terms which act non-trivially only on nearby sites
 spectral gap lower bounded by a constant independent of the number of subsystems

```
with the distance separating the sites \blacktriangleleft between observables measured on distinct sites \blacktriangleleft
```

Fact: Random (translation-invariant) MPS typically have correlations that decay exponentially fast, with a *small correlation length* (Lancien/Pérez-García).

Proof strategy: Observe that the correlation length is upper bounded by $1/|\log \lambda(\Phi)|$ for Φ a random quantum channel associated to the random MPS (its so-called *transfer operator*).

What about explicit constructions of optimal quantum expanders?
 Important for applications (cryptography, error correction, condensed matter physics, etc.)
 Seminal constructions required a large amount of randomness.

First step towards derandomization: Kraus operators sampled from the Clifford group or as sparse matrices with independent ± 1 entries.

Generalization: Nearly optimal *k-copy quantum expander* with Kraus operators sampled from a unitary 2*k*-design (Harrow/Hastings, Fukuda, Lancien).

 \rightarrow efficiently generable: e.g. random circuit of depth poly(log n, k) (Haferkamp/Huang/Schuster)

What about explicit constructions of optimal quantum expanders?
 Important for applications (cryptography, error correction, condensed matter physics, etc.)
 Seminal constructions required a large amount of randomness.

First step towards derandomization: Kraus operators sampled from the Clifford group or as sparse matrices with independent ± 1 entries.

Generalization: Nearly optimal *k-copy quantum expander* with Kraus operators sampled from a unitary 2*k*-design (Harrow/Hastings, Fukuda, Lancien).

 \vdash efficiently generable: e.g. random circuit of depth poly($\log n, k$) (Haferkamp/Huang/Schuster)

• What about identifying the *full spectral distribution* of random quantum channels? For large n, the eigenvalues of $\sqrt{d}(\Phi - \Pi)$ are typically inside the unit disc. But how are they distributed? \downarrow random Kraus rank d unital quantum channel on $\mathcal{M}_n(\mathbf{C})$

Full answer in the self-adjoint case (Lancien/Oliveira Santos/Youssef).

Partial conjectures in the non-self-adjoint case (Bruzda/Cappellini/Sommers/Życzkowski).

- What about explicit constructions of optimal quantum expanders?
 Important for applications (cryptography, error correction, condensed matter physics, etc.)
 Seminal constructions required a large amount of randomness.
 - First step towards derandomization: Kraus operators sampled from the Clifford group or as sparse matrices with independent ± 1 entries.
 - Generalization: Nearly optimal *k-copy quantum expander* with Kraus operators sampled from a unitary 2*k*-design (Harrow/Hastings, Fukuda, Lancien).
 - $\begin{tabular}{l} $ & \textbf{ efficiently generable: e.g. random circuit of depth } poly(\log n, k) \end{tabular} (& \textbf{ Haferkamp/Huang/Schuster})$
- What about identifying the *full spectral distribution* of random quantum channels? For large n, the eigenvalues of $\sqrt{d}(\Phi \Pi)$ are typically inside the unit disc. But how are they distributed? \vdash random Kraus rank d unital quantum channel on $\mathcal{M}_n(\mathbf{C})$ Full answer in the self-adjoint case (Lancien/Oliveira Santos/Youssef).
 - $Partial\ conjectures\ in\ the\ non-self-adjoint\ case\ (Bruzda/Cappellini/Sommers/\dot{Z}yczkowski).$
- Do the results about the typical spectral gap of random quantum channels remain true when we impose extra symmetries on the model?

- What about explicit constructions of optimal quantum expanders?
 Important for applications (cryptography, error correction, condensed matter physics, etc.)
 Seminal constructions required a large amount of randomness.
 - First step towards derandomization: Kraus operators sampled from the Clifford group or as sparse matrices with independent ± 1 entries.
 - Generalization: Nearly optimal *k-copy quantum expander* with Kraus operators sampled from a unitary 2*k*-design (Harrow/Hastings, Fukuda, Lancien).
 - \vdash efficiently generable: e.g. random circuit of depth poly(log n, k) (Haferkamp/Huang/Schuster)
- What about identifying the *full spectral distribution* of random quantum channels? For large n, the eigenvalues of $\sqrt{d}(\Phi \Pi)$ are typically inside the unit disc. But how are they distributed? \vdash random Kraus rank d unital quantum channel on $\mathcal{M}_n(\mathbf{C})$ Full answer in the self-adjoint case (Lancien/Oliveira Santos/Youssef).
 - $Partial\ conjectures\ in\ the\ non-self-adjoint\ case\ (Bruzda/Cappellini/Sommers/\dot{Z}yczkowski).$
- Do the results about the typical spectral gap of random quantum channels remain true when we impose extra symmetries on the model?
- What about looking at other, related, notions of expansions, such as more geometric ones (Bannink/Briët/Labib/Maassen) or linear-algebraic ones (Li/Qiao/Wigderson/Wigderson/Zhang)?

Quantum expanders - Random constructions & Applications

References

- T. Bannink, J. Briët, F. Labib, H. Maassen. Quasirandom quantum channels. 2020.
- C. Bordenave. A new proof of Friedman's second eigenvalue theorem and its extension to random lifts. 2020.
- T. Brailovskaya, R. van Handel. Universality and sharp matrix concentration inequalities. 2024.
- W. Bruzda, V. Cappellini, H.-J. Sommers, K. Życzkowski. Random quantum operations. 2009.
- J. Friedman. A proof of Alon's second eigenvalue conjecture. 2008.
- M. Fukuda. Concentration of quantum channels with random Kraus operators via matrix Bernstein inequality. 2025.
- J. Haferkamp, H.-Y. Huang, T. Schuster. Random unitaries in extremely low depth. 2025.
- A.W. Harrow, M.B. Hastings. Classical and quantum tensor product expanders. 2009.
- M.B. Hastings. Solving gapped Hamiltonians locally. 2006.
- M.B. Hastings. Random unitaries give quantum expanders. 2007.
- C. Lancien. Optimal quantum (tensor product) expanders from unitary designs. 2024.
- C. Lancien, P. Oliveira Santos, P. Youssef. Limiting spectral distribution of random self-adjoint quantum channels. 2024.
- C. Lancien, D. Pérez-García. Correlation length in random MPS and PEPS. 2022.
- C. Lancien, P. Youssef. A note on quantum expanders. 2023.
- Z. Landau, U. Vazirani, T. Vidick. A polynomial-time algorithm for the ground state of 1D gapped local Hamiltonians. 2015.
- Y. Li, Y. Qiao, A. Wigderson, Y. Wigderson, C. Zhang. On linear-algebraic notions of expansion. 2022.
- G. Pisier. Quantum expanders and geometry of operator spaces. 2014.
- S. Timhadjelt. Non-Hermitian expander obtained with Haar distributed unitaries. 2024.

QMATH 16 - September 1 2025