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Classical expanders

G a (directed or undirected) d-biregular graph on n vertices.
d incoming and d outgoing edges at each vertex

A its (normalized) adjacency matrix, i.e. the n×n matrix s.t. Akl = e(l→k)/d for all 1 ⩽ k , l ⩽ n.
number of edges from vertex l to vertex k

λ1(A), . . . ,λn(A) eigenvalues of A, ordered s.t. |λ1(A)|⩾ · · ·⩾ |λn(A)|.

G biregular ⇒ A bistochastic ⇒ λ1(A) = 1, with associated eigenvector the uniform probability u.
The spectral expansion parameter of G is λ(G) := |λ2(A)|. (1/n, . . . ,1/n) =

Observation: λ(G) = |λ1(A− J)|, where J is the adjacency matrix of the complete graph on n
vertices, i.e. the n×n matrix whose entries are all equal to 1/n.
−→ λ(G) is a distance measure between G and the complete graph.

Definition [Classical expander (informal)]

A d-biregular graph G on n vertices is an expander if it is sparse (i.e. d ≪ n) and spectrally
expanding (i.e. λ(G)≪ 1).

−→ G is both ‘economical’ and ‘resembling’ the complete graph.
For instance, a random walk supported on G converges fast to equilibrium:
For any probability p on {1, . . . ,n}, ∀ q ∈ N, ∥Aqp−u∥1 ⩽

√
n λ(G)q .

exponential convergence, at rate | logλ(G)|
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Quantum analogue of the transition matrix associated to a biregular graph

Classical - Quantum correspondence:
p ∈ Rn probability vector ↭ ρ ∈ Mn(C) quantum state.

self-adjoint positive semidefinite trace 1 matrix
A : Rn → Rn transition matrix ↭ Φ : Mn(C)→ Mn(C) quantum channel.

completely positive (CP) trace-preserving (TP) linear map
G biregular: A leaves u invariant ↭ Φ unital: Φ leaves I/n invariant.

Question: What is the analogue of the degree in the quantum setting?

Answer: The Kraus rank.
Given a CP map Φ on Mn(C), a Kraus representation of Φ is of the form:

Φ : X ∈ Mn(C) 7→
d

∑
i=1

Ki XK ∗
i ∈ Mn(C), where K1, . . . ,Kd ∈ Mn(C). (⋆)

Kraus operators of Φ

The minimal d s.t. Φ can be written as (⋆) is the Kraus rank of Φ (it is always at most n2).
[ Note: Φ is TP iff ∑

d
i=1 K ∗

i Ki = I. Φ is unital iff ∑
d
i=1 Ki K ∗

i = I. ]

Indeed, the degree and the Kraus rank both quantify the 1-iteration spreading:
G a degree d graph: If |supp(p)|= 1, then |supp(Ap)|⩽ d .
Φ a Kraus rank d quantum channel: If rank(ρ) = 1, then rank(Φ(ρ))⩽ d .
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Quantum expanders

Φ a Kraus rank d unital quantum channel on Mn(C).
λ1(Φ), . . . ,λn2(Φ) eigenvalues of Φ, ordered s.t. |λ1(Φ)|⩾ · · ·⩾ |λn2(Φ)|.

Φ TP and unital ⇒ λ1(Φ) = 1, with associated eigenstate the maximally mixed state I/n.
The spectral expansion parameter of Φ is λ(Φ) := |λ2(Φ)|.

Observation: λ(Φ) = |λ1(Φ−Π)|, where Π is the maximally mixing channel on Mn(C), i.e.
Π : X ∈ Mn(C) 7→ Tr(X) I/n ∈ Mn(C).
−→ λ(Φ) is a distance measure between Φ and the maximally mixing channel.

Definition [Quantum expander (informal)]

A Kraus rank d unital quantum channel Φ on Mn(C) is an expander if it is sparse (i.e. d ≪ n2)
and spectrally expanding (i.e. λ(Φ)≪ 1).

−→ Φ is both ‘economical’ and ‘resembling’ the maximally mixing channel.
For instance, the dynamics associated to Φ converges fast to equilibrium:
For any state ρ on Cn, ∀ q ∈ N, ∥Φq(ρ)− I/n∥1 ⩽

√
n λ(Φ)q .

exponential convergence, at rate | logλ(Φ)|
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Optimal expanders: definition and constructions in the classical case

Fact: For any d-biregular graph G on n vertices, λ(G)⩾ 1/
√

d −on(1).
−→ G is an optimal classical expander (aka Ramanujan graph) if λ(G)⩽ 1/

√
d .

(or 2
√

d −1/d for G undirected)

Question: Do Ramanujan graphs exist?
1 Explicit constructions of exactly Ramanujan graphs only for d = pm +1, p prime.
2 Random constructions of almost Ramanujan graphs for all d . More precisely: for large n,

almost all d-biregular graphs are almost Ramanujan (Friedman, Bordenave).
3 Existence of exactly Ramanujan graphs for all d .

Fact: For any Kraus rank d unital quantum channel Φ on Mn(C), λ(Φ)⩾ 1/
√

d −on(1).
−→ Φ is an optimal quantum expander if λ(Φ)⩽ 1/

√
d .

(or 2
√

d −1/d for Φ self-adjoint)

Question: Do optimal quantum expanders exist?
First attempts at exhibiting explicit constructions (inspired by classical ones): not optimal.
−→ What about random constructions?

Strategy: Pick K1, . . . ,Kd ∈ Mn(C) at random, under the constraints

{
∑

d
i=1 K ∗

i Ki = I

∑
d
i=1 Ki K ∗

i = I
.

Φ : X 7→ ∑
d
i=1 Ki XK ∗

i is a random Kraus rank (at most) d unital quantum channel on Mn(C).
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Constructions of optimal expanders in the quantum case

Theorem [Haar unitaries as Kraus operators (Hastings, Pisier, Timhadjelt)]

Pick U1, . . . ,Ud ∈ Mn(C) independent Haar unitaries. Let Ki = Ui/
√

d , 1 ⩽ i ⩽ d .
The unital quantum channel Φ associated to the Ki ’s satisfies:

∀ ε > 0, P
(

λ(Φ)⩽
1√
d
(1+ ε)

)
⩾ 1−e−cεn1/12

, where c > 0 is an absolute constant.

Question: Does this remain true for ‘less random’ unitary Kraus operators?

A measure µ on U(n) is a k-design if EU∼µ[U⊗k (·)U∗⊗k ] = EU∼µH [U
⊗k (·)U∗⊗k ].

Haar measure on U(n)

Theorem [2-design unitaries as Kraus operators (Lancien)]

Pick U1, . . . ,Ud ∈ Mn(C) independent 2-design unitaries. Let Ki = Ui/
√

d , 1 ⩽ i ⩽ d .
If d ⩾ (logn)8+δ for some δ > 0, the unital quantum channel Φ associated to the Ki ’s satisfies:

P
(

λ(Φ)⩽
2√
d

(
1+

C

(logn)δ/6

))
⩾ 1− 1

n
, where C < ∞ is an absolute constant.

Interest: Nearly optimal quantum expander from random Kraus operators which are sampled
according to a simple measure on the unitary group (uniform measure on explicit finite subset).

Remark: Similar results for Kraus operators sampled as (renormalized) Gaussian matrices
(Lancien/Pérez-García) or sparse matrices with arbitrary independent entries (Lancien/Youssef).
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Proof idea to show that Eλ(Φ)⩽ 2/
√

d

Goal: Upper bound E|λ2(Φ)|= E|λ1(Φ−Π)|, where Π : X ∈ Mn(C) 7→ Tr(X) I/n ∈ Mn(C).
(Next: Concentration of measure to show that λ(Φ) is typically close to Eλ(Φ)...)

= E(Φ)

Observations:
• |λ1(Ψ)|⩽ s1(Ψ) = ∥Ψ∥∞.
• ∥Ψ∥∞ = ∥MΨ∥∞, where for Ψ : X 7→ ∑

d
i=1 Ki XL∗i , MΨ = ∑

d
i=1 Ki ⊗ L̄i .

[ Identification Ψ : Mn(C)→ Mn(C)≡ MΨ : Cn ⊗Cn → Cn ⊗Cn preserves the operator norm. ]
−→ Upper bound E∥MΦ−E(MΦ)︸ ︷︷ ︸

=:X

∥∞, where MΦ = ∑
d
i=1 Ki ⊗ K̄i .

= Ui/
√

d for Ui random unitary

Implementation:

• For Haar unitaries, this can be done by a moments’ method:
By Jensen’s inequality, we have: ∀ p ∈ N, E∥X∥∞ ⩽ E∥X∥p ⩽ (ETr|X |p)1/p .
−→ Estimate the r.h.s. by Weingarten calculus and choose p = pn,d that minimizes it.

• For 2-design unitaries, we use recent operator norm estimates for random matrices with
dependencies and non-homogeneity (Brailovskaya/van Handel):
Setting X = ∑

d
i=1 Zi , with Zi := Ki ⊗ K̄i −E(Ki ⊗ K̄i), 1 ⩽ i ⩽ d , we have:

E∥X∥∞ ⩽ ∥E(XX∗)∥1/2
∞ +∥E(X∗X)∥1/2

∞ +C(logn)6
(
∥Cov(X)∥1/2

∞ +
(

E max
1⩽i⩽d

∥Zi∥2
∞

)1/2)
.

−→ Estimate all parameters appearing on the r.h.s.
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Implications for typical decay of correlations in many-body quantum systems

Matrix product states (MPS) form a subset of many-body quantum states.

They are particularly useful because:
They admit an efficient description: number of parameters that scales linearly rather than
exponentially with the number of subsytems.
They are good approximations of several ‘physically relevant’ states, such as ground states
of gapped local Hamiltonians on 1D systems (Hastings, Landau/Vazirani/Vidick).

composed of terms which act non-trivially only on nearby sites
spectral gap lower bounded by a constant independent of the number of subsystems

Fact: Random (translation-invariant) MPS typically have correlations that decay exponentially
fast, with a small correlation length (Lancien/Pérez-García).

with the distance separating the sites
between observables measured on distinct sites

Proof strategy: Observe that the correlation length is upper bounded by 1/| logλ(Φ)| for Φ a
random quantum channel associated to the random MPS (its so-called transfer operator).
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Some perspectives

What about explicit constructions of optimal quantum expanders?
Important for applications (cryptography, error correction, condensed matter physics, etc.)

Seminal constructions required a large amount of randomness.
First step towards derandomization: Kraus operators sampled from the Clifford group or as
sparse matrices with independent ±1 entries.

Generalization: Nearly optimal k-copy quantum expander with Kraus operators sampled
from a unitary 2k -design (Harrow/Hastings, Fukuda, Lancien).

efficiently generable: e.g. random circuit of depth poly(logn,k) (Haferkamp/Huang/Schuster)

What about identifying the full spectral distribution of random quantum channels?
For large n, the eigenvalues of

√
d(Φ−Π) are typically inside the unit disc.

But how are they distributed?

Full answer in the self-adjoint case (Lancien/Oliveira Santos/Youssef).
Partial conjectures in the non-self-adjoint case (Bruzda/Cappellini/Sommers/Życzkowski).

random Kraus rank d unital quantum channel on Mn(C)

Do the results about the typical spectral gap of random quantum channels remain true when
we impose extra symmetries on the model?

What about looking at other, related, notions of expansions, such as more geometric ones
(Bannink/Briët/Labib/Maassen) or linear-algebraic ones (Li/Qiao/Wigderson/Wigderson/Zhang)?

Cécilia Lancien Quantum expanders – Random constructions & Applications QMATH 16 – September 1 2025 12



Some perspectives

What about explicit constructions of optimal quantum expanders?
Important for applications (cryptography, error correction, condensed matter physics, etc.)

Seminal constructions required a large amount of randomness.
First step towards derandomization: Kraus operators sampled from the Clifford group or as
sparse matrices with independent ±1 entries.

Generalization: Nearly optimal k-copy quantum expander with Kraus operators sampled
from a unitary 2k -design (Harrow/Hastings, Fukuda, Lancien).

efficiently generable: e.g. random circuit of depth poly(logn,k) (Haferkamp/Huang/Schuster)

What about identifying the full spectral distribution of random quantum channels?
For large n, the eigenvalues of

√
d(Φ−Π) are typically inside the unit disc.

But how are they distributed?

Full answer in the self-adjoint case (Lancien/Oliveira Santos/Youssef).
Partial conjectures in the non-self-adjoint case (Bruzda/Cappellini/Sommers/Życzkowski).
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Some perspectives

What about explicit constructions of optimal quantum expanders?
Important for applications (cryptography, error correction, condensed matter physics, etc.)

Seminal constructions required a large amount of randomness.
First step towards derandomization: Kraus operators sampled from the Clifford group or as
sparse matrices with independent ±1 entries.

Generalization: Nearly optimal k-copy quantum expander with Kraus operators sampled
from a unitary 2k -design (Harrow/Hastings, Fukuda, Lancien).

efficiently generable: e.g. random circuit of depth poly(logn,k) (Haferkamp/Huang/Schuster)

What about identifying the full spectral distribution of random quantum channels?
For large n, the eigenvalues of

√
d(Φ−Π) are typically inside the unit disc.

But how are they distributed?

Full answer in the self-adjoint case (Lancien/Oliveira Santos/Youssef).
Partial conjectures in the non-self-adjoint case (Bruzda/Cappellini/Sommers/Życzkowski).
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