Exercises – October 21st 2025

Exercise 1. We recall that the partial trace $\operatorname{Tr}_{\mathcal{H}_2}: B(\mathcal{H}_1 \otimes \mathcal{H}_2) \to B(\mathcal{H}_1)$ is the linear map whose action on product operators is $\operatorname{Tr}_{\mathcal{H}_2}(X_1 \otimes X_2) = \operatorname{Tr}(X_2)X_1$ and is extended to $B(\mathcal{H}_1 \otimes \mathcal{H}_2)$ by linearity.

1. Show that $Tr_{\mathcal{H}_2}$ satisfies

$$\forall X \in B(\mathcal{H}_1 \otimes \mathcal{H}_2), Y \in B(\mathcal{H}_1), \operatorname{Tr}(X(Y \otimes I)) = \operatorname{Tr}(\operatorname{Tr}_{\mathcal{H}_2}(X)Y).$$

2. Use the above observation to deduce that

$$\forall X \in B(\mathcal{H}_1 \otimes \mathcal{H}_2), X \geqslant 0 \implies \operatorname{Tr}_{\mathcal{H}_2}(X) \geqslant 0.$$

Exercise 2. Given a unit vector $\varphi \in \mathbb{C}^d \otimes \mathbb{C}^d$, we define its distance to the set of unit product vectors as

$$d(\varphi) = \min \{ \|\varphi - \chi_1 \otimes \chi_2\| : \chi_1, \chi_2 \in \mathbb{C}^d, \|\chi_1\|, \|\chi_2\| = 1 \}.$$

What is the maximal value that $d(\varphi)$ can take? Show that it is attained iff φ is maximally entangled.

Exercise 3. Denote by $\{e_1, \ldots, e_d\}$ the canonical orthonormal basis of \mathbb{C}^d , and let $\psi = \frac{1}{\sqrt{d}} \sum_{i=1}^d e_i \otimes e_i$ be a maximally entangled unit vector in $\mathbb{C}^d \otimes \mathbb{C}^d$. Show that, for all $X, Y \in B(\mathbb{C}^d)$, we have

$$\operatorname{Tr}(|\psi\rangle\langle\psi|(X\otimes Y)) = \frac{1}{d}\operatorname{Tr}(XY^T),$$

where Y^T denotes the transposition of Y, with respect to the basis $\{e_1, \ldots, e_d\}$.

Exercise 4. [PPT criterion for entanglement]

We recall that, given an orthonormal basis $\{e_1, \ldots, e_{d_1}\}$ of \mathcal{H}_1 , the transposition with respect to this basis is the linear map $T: B(\mathcal{H}_1) \to B(\mathcal{H}_1)$ that acts as

$$T\left(\sum_{i,j=1}^{d_1} X_{ij} | e_i \rangle \langle e_j | \right) = \sum_{i,j=1}^{d_1} X_{ij} | e_j \rangle \langle e_i |.$$

We then define the partial transposition as the linear map $\Gamma: B(\mathcal{H}_1 \otimes \mathcal{H}_2) \to B(\mathcal{H}_1 \otimes \mathcal{H}_2)$ that acts as the transposition on $B(\mathcal{H}_1)$ and the identity on $B(\mathcal{H}_2)$. Concretely, it acts as

$$\Gamma\left(\sum_{i_1,j_1=1}^{d_1}\sum_{i_2,j_2=1}^{d_2}X_{i_1j_1i_2j_2}|e_{i_1}\rangle\langle e_{j_1}|\otimes|f_{i_2}\rangle\langle f_{j_2}|\right) = \sum_{i_1,j_1=1}^{d_1}\sum_{i_2,j_2=1}^{d_2}X_{i_1j_1i_2j_2}|e_{j_1}\rangle\langle e_{i_1}|\otimes|f_{i_2}\rangle\langle f_{j_2}|.$$

[Note: The (partial) transposition depends on the choice of basis, but the spectrum of the (partial) transposition of a matrix does not. One crucial difference between transposition and partial transposition, though, is that transposition preserves the spectrum while partial transposition generally does not.]

A state ρ on $\mathcal{H}_1 \otimes \mathcal{H}_2$ is called positive under partial transposition (PPT) if $\Gamma(\rho) \geqslant 0$.

- Given a state ρ on H₁ ⊗ H₂, show that if it is separable, then it is PPT.
 [This fact is usually used in its contrapositive form, as a so-called entanglement criterion, namely: if ρ is not PPT, then it is guaranteed to be entangled.]
- 2. Given a pure state $\rho = |\varphi\rangle\langle\varphi|$ on $\mathcal{H}_1 \otimes \mathcal{H}_2$, show that it is separable iff it is PPT.

Exercise 5. [Flip operator]

We define the flip operator F on $\mathbb{C}^d \otimes \mathbb{C}^d$ as the operator whose action on product vectors is $F(\varphi_1 \otimes \varphi_2) = \varphi_2 \otimes \varphi_1$ and is extended to $\mathbb{C}^d \otimes \mathbb{C}^d$ by linearity.

- 1. Given an orthonormal basis $\{e_1, \ldots, e_d\}$ of \mathbb{C}^d , write the expression of F in the orthonormal product basis $\{e_i \otimes e_j, \ 1 \leqslant i, j \leqslant d\}$ of $\mathbb{C}^d \otimes \mathbb{C}^d$.
- 2. What are the eigenvalues and eigenvectors of F?
- 3. Show that F satisfies, for all $X, Y \in B(\mathbb{C}^d)$,

$$\operatorname{Tr}(F(X \otimes Y)) = \operatorname{Tr}(XY)$$
.

Exercise 6. Denote by $\{e_1, \ldots, e_d\}$ the canonical orthonormal basis of \mathbb{C}^d , and let $\psi = \frac{1}{\sqrt{d}} \sum_{i=1}^d e_i \otimes e_i$ be a maximally entangled unit vector in $\mathbb{C}^d \otimes \mathbb{C}^d$. Show that

$$\Gamma(|\psi\rangle\langle\psi|) = \frac{1}{d}F,$$

where Γ is the partial transposition (as defined in Exercise $\boxed{4}$) and F is the flip operator (as defined in Exercise $\boxed{5}$).

Exercise 7. [Isotropic states]

Isotropic states on $\mathbb{C}^d \otimes \mathbb{C}^d$ are states which are convex combinations of the maximally mixed state I/d^2 and the maximally entangled state $|\psi\rangle\langle\psi|$. They have the form

$$\rho_{\alpha} = \alpha |\psi\rangle\langle\psi| + (1 - \alpha)\frac{\mathrm{I}}{d^2}, \quad \alpha \in [0, 1].$$

Compute $\Gamma(\rho_{\alpha})$ and show that ρ_{α} is PPT iff $\alpha \in \left[0, \frac{1}{d+1}\right]$.

[By Exercise 4], this guarantees that ρ_{α} is entangled for $\alpha > \frac{1}{d+1}$. In fact, it is also true that ρ_{α} is separable for $\alpha \leqslant \frac{1}{d+1}$. But this is harder to prove...]

Exercise 8. [Werner states]

The symmetric and anti-symmetric subspaces of $\mathbb{C}^d \otimes \mathbb{C}^d$ are defined, respectively, as the +1 and -1 eigenspaces of the flip operator F on $\mathbb{C}^d \otimes \mathbb{C}^d$, as defined in Exercise 5. We thus have

$$S_{\mathbb{C}^d\otimes\mathbb{C}^d} = \left\{ \varphi \in \mathbb{C}^d \otimes \mathbb{C}^d : F\varphi = \varphi \right\} \quad and \quad A_{\mathbb{C}^d\otimes\mathbb{C}^d} = \left\{ \varphi \in \mathbb{C}^d \otimes \mathbb{C}^d : F\varphi = -\varphi \right\}.$$

We denote by Π_S and Π_A the orthogonal projectors onto $S_{\mathbb{C}^d \otimes \mathbb{C}^d}$ and $A_{\mathbb{C}^d \otimes \mathbb{C}^d}$. Those can be written as

$$\Pi_S = \frac{1}{2}(I + F)$$
 and $\Pi_A = \frac{1}{2}(I - F)$.

The symmetric and anti-symmetric states on $\mathbb{C}^d \otimes \mathbb{C}^d$ are then defined as $\pi_S = \Pi_S / \operatorname{Tr}(\Pi_S)$ and $\pi_A = \Pi_A / \operatorname{Tr}(\Pi_A)$. Since $\dim(S_{\mathbb{C}^d \otimes \mathbb{C}^d}) = d(d+1)/2$ and $\dim(A_{\mathbb{C}^d \otimes \mathbb{C}^d}) = d(d-1)/2$, we have

$$\pi_S = \frac{2}{d(d+1)}(I+F)$$
 and $\pi_A = \frac{2}{d(d-1)}(I-F)$.

We can now define Werner states on $\mathbb{C}^d \otimes \mathbb{C}^d$: those are states which are convex combinations of the symmetric state π_S and the anti-symmetric state π_A . They have the form

$$\sigma_{\lambda} = \lambda \pi_S + (1 - \lambda) \pi_A, \quad \lambda \in [0, 1].$$

Compute $\Gamma(\sigma_{\lambda})$ and show that σ_{λ} is PPT iff $\lambda \in \left[\frac{1}{2}, 1\right]$.

[By Exercise] this guarantees that σ_{λ} is entangled for $\lambda > \frac{1}{2}$. In fact, it is also true that σ_{λ} is separable for $\lambda \leqslant \frac{1}{2}$. But this is harder to prove...]

Hints for exercises – October 21st 2025

Hints for exercise 1

- 1. Write X as a linear combination of product operators.
- 2. Use the following characterization of positive semi-definite operators: $X \ge 0$ iff for all $Y \ge 0$, $\text{Tr}(XY) \ge 0$.

Hints for exercise 2

Write $\|\varphi - \chi_1 \otimes \chi_2\|^2 = \langle \varphi - \chi_1 \otimes \chi_2 | \varphi - \chi_1 \otimes \chi_2 \rangle$. Then, in order to study the quantity $\langle \varphi | \chi_1 \otimes \chi_2 \rangle$, write φ in its Schmidt decomposition.

Hints for exercise 4

- 1. Observe that the partial transposition of a product state $\rho_1 \otimes \rho_2$ is positive semi-definite.
- 2. Write φ in its Schmidt decomposition, and perform the partial transposition of ρ in the Schmidt basis.

Hints for exercise 5

- 1. What is the action of F on each vector $e_i \otimes e_j$?
- 2. Observe that $F^2 = I$.

Hints for exercise 7

Compute $\Gamma(I)$ and $\Gamma(|\psi\rangle\langle\psi|)$.

Hints for exercise 8

Re-write σ_{λ} as a linear combination of I and F. Then compute $\Gamma(I)$ and $\Gamma(F)$.

1) Let $\times \in \mathbb{B}(\mathcal{H}_1 \otimes \mathcal{H}_2)$, $Y \in \mathbb{B}(\mathcal{H}_1)$. Write $X = \sum_{i=1}^{r} \alpha_i \times_1^{(i)} \otimes \times_2^{(i)}$, for $X_1^{(i)} \in \mathbb{B}(\mathcal{H}_1)$, $X_2^{(i)} \in \mathbb{B}(\mathcal{H}_2)$, $\alpha_i \in \mathbb{C}$.

 $\text{Then: } \text{Th}_{\mathcal{H}_{2}}(X) = \sum_{i=1}^{r} \alpha_{i} \text{Th}\left(X_{2}^{(i)}\right) \times_{1}^{(i)}. \quad \text{So: } \text{Th}\left(\text{Th}_{\mathcal{H}_{2}}(X) \text{Y}\right) = \sum_{i=1}^{r} \alpha_{i} \text{Th}\left(X_{2}^{(i)}\right) \text{Th}\left(X_{1}^{(i)} \text{Y}\right)$

And: $T_{\lambda}(x(y \otimes I)) = \sum_{i=1}^{r} \alpha_{i} T_{\lambda}(x_{i}^{(i)}y) \otimes (x_{i}^{(i)}I) = \sum_{i=1}^{r} \alpha_{i} T_{\lambda}(x_{i}^{(i)}y) T_{\lambda}(x_{i}^{(i)})$

2) See Lecture motes (Proposition 2.1.8, foint (3))

Exercise 2

Let 4 € Cd & Cd ot. 1141=1.

For all $X_1, X_2 \in \mathbb{C}^d$ s.t. $||X_1|| = ||X_2|| = 1$, we have:

 $\| \Psi - \chi_{1} \otimes \chi_{2} \|^{2} = \langle \Psi - \chi_{1} \otimes \chi_{2} | \Psi - \chi_{1} \otimes \chi_{2} \rangle = \langle \Psi | \Psi \rangle + \langle \chi_{1} \otimes \chi_{2} | \chi_{1} \otimes \chi_{2} \rangle - \langle \Psi | \chi_{1} \otimes \chi_{2} \rangle - \langle \chi_{1} \otimes \chi_{2} | \Psi \rangle$ $= \| \Psi \|^{2} + \| \chi_{1} \|^{2} \| \chi_{2} \|^{2} - 2 \operatorname{Re} \langle \Psi | \chi_{1} \otimes \chi_{2} \rangle = 2 \left(1 - \operatorname{Re} \langle \Psi | \chi_{1} \otimes \chi_{2} \rangle \right)$

So minimizing 114- ×10×211 is equivalent to maximizing Re(41×10×2)

Now write $Y = \sum_{i=1}^{L} V \lambda_i u_i \otimes v_i$ in its Schmidt decomposition. We thus have $Re \langle P | \chi_1 \otimes \chi_2 \rangle = \sum_{i=1}^{L} V \lambda_i Re \langle u_i | \chi_1 \times v_i | \chi_2 \rangle$.

Hence by Hölder inequality: $\Re (4|\chi_1 \otimes \chi_2) \leq (\max_{i=1}^{n} |\chi_i|) = (\sum_{i=1}^{n} |\chi_i| |\chi_1|) \leq (\max_{i=1}^{n} |\chi_i|) \leq (\max_{i=1}^{n}$

And therefore: $d(4) = \sqrt{2(1-\sqrt{\lambda_1})} & \sqrt{2(1-\frac{1}{\sqrt{a}})}$, with equality iff 4 is maximally entangled.

Exercise 3 = |e; Xej|⊗|e; Xej|

We have: $|+\times+|=\frac{1}{d}\sum_{i,j=1}^{d}|e_i\otimes e_i\times e_j\otimes e_j|$ So for all \times , $y\in B(C^d)$, we have:

 $Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y)) = \frac{1}{3} \sum_{i,j=1}^{d} Tn(|\Psi \times \Psi| (\times \otimes Y))$

Exercise 4

See lecture notes (Theorems 2.3.10 and 2.3.11)

Exercise 5

1) V 1 si, j s d, F (ei @ej) = ej @ei. So F = \(\Si \) | ei @ej \Xej @ei|

2) It is easy to see that $F^2 = I$. (Indeed, for any $\Psi \in \mathbb{C}^d \otimes \mathbb{C}^d$, writing $\Psi = \sum_{i=1}^{r} \mathscr{C}_i \Psi_i^{(i)} \otimes \Psi_i^{(i)}$, we have: $F^2\Psi = \sum_{i=1}^{r} \mathscr{C}_i \Psi_i^{(i)} \otimes \Psi_i^{(i)}$ and $F^2\Psi = F(F\Psi) = \sum_{i=1}^{r} \mathscr{C}_i \Psi_i^{(i)} \otimes \Psi_i^{(i)} = \Psi$.

So the eigenvalues of Fare +1 and -1.

Suppose that $9 = \sum_{i,j=1}^{d} 9_{i,j} e_i \otimes e_j$ is s.t. F9 = 9 i.e. $\sum_{i,j=1}^{d} 9_{i,j} e_i \otimes e_i = \sum_{i,j=1}^{d} 9_{i,j} e_i \otimes e_j$

Similarly, if 4 is st. F4=-4, then ∀ 1 (i,j (d, 4); =-4ij. So 4= ∑ 4ij (e: ej - ej ⊗ e;)

Conclusion: The +1 eigenspace of F is opan($1e_i\otimes e_i$, $1(i(d)\cup 1)$ $\frac{1}{\sqrt{2}}(e_i\otimes e_j+e_j\otimes e_i)$, 1(i(j(d))) — dimension $\frac{d(d+1)}{2}$

3) $\forall \times, \forall \in B(C^d)$, $T_i(F(X \otimes Y)) = \sum_{i,j=1}^{d} T_i([e_i \times e_j \mid \times) T_i([e_j \times e_i \mid Y)) = \sum_{i,j=1}^{d} X_{i,j} Y_{j,i} = T_i(X Y)$

Exercise 6
$$T(|+\times+|) = \frac{1}{d} \sum_{i,j=1}^{d} T(|e_i \times e_j| \otimes |e_i \times e_j|) = \frac{1}{d} \sum_{i,j=1}^{d} |e_i \times e_i| \otimes |e_i \times e_j| = \frac{1}{d} F.$$

$$= T(|e_i \times e_j|) \otimes |e_i \times e_j|$$

We have
$$T(1+X+1)=\frac{1}{d}F$$
 and $T'(1)=1$. So $T(e_{x})=\alpha\frac{F}{d}+(1-\alpha)\frac{1}{d^{2}}$
Hence, the eigenvalues of $T'(e_{x})$ are $\lambda_{1}=\frac{1-\alpha}{d^{2}}+\frac{\alpha}{d}$ (with multiplicity $\frac{d}{d}(d+1)$) and $\lambda_{2}=\frac{1-\alpha}{d^{2}}-\frac{\alpha}{d}$ (with multiplicity $\frac{d}{d}(d+1)$) $\lambda_{1}>0$ for all $0\le \alpha\le 1$ and $\lambda_{2}>0$ iff $0\le \alpha\le \frac{1}{d+1}$.
So e_{x} is PPT iff $0\le \alpha\le \frac{1}{d+1}$

Exercise 8

First observe that:
$$\nabla_{\lambda} = \frac{2\lambda}{d(d+1)} \left(1+F \right)_{1} + \frac{2(1-\lambda)}{d(d-1)} \left(1-F \right) = \frac{2}{d(d^{2}-1)} \left((d+1-2\lambda) 1 + ((2\lambda-1)d-1) F \right)$$
. Next we have $\Gamma(F) = d \mid \forall \forall \forall \mid \text{ and } \Gamma(J) = I$. So $\Gamma(\nabla_{\lambda}) = \frac{2}{d(d^{2}-1)} \left((d+1-2\lambda) 1 + d \left((2\lambda-1)d-1 \right) \mid \forall \forall \forall \mid i \right)$. Hence, the eigenvalues of X_{λ} are $\lambda_{1} = d+1-2\lambda$ (with multiplicity $d^{2}-1$) and $\lambda_{2} = (d+1-2\lambda) + d \left((2\lambda-1)d-1 \right)$ (with multiplicity $d^{2}-1$) and $d^{2} = (d+1-2\lambda) + d \left((2\lambda-1)d-1 \right) + d \left(($

Exercises – November 5th 2025

Exercise 1. Find the unital completely positive linear maps that are the dual of the following trace-preserving completely positive linear maps:

- 1. $\Phi: X \in B(\mathcal{H}) \mapsto \operatorname{Tr}(X)\sigma \in B(\mathcal{H}), \text{ where } \sigma \in D(\mathcal{H}).$
- 2. $\Phi: X \in B(\mathcal{H}_1 \otimes \mathcal{H}_2) \mapsto \operatorname{Tr}_{\mathcal{H}_2}(X) \in B(\mathcal{H}_1)$.
- 3. $\Phi: X \in B(\mathcal{H}_1) \mapsto X \otimes \sigma \in B(\mathcal{H}_1 \otimes \mathcal{H}_2)$, where $\sigma \in D(\mathcal{H}_2)$.

Exercise 2. Define Π_{λ} as the depolarizing channel with parameter $\lambda \in [0,1]$ on $\mathcal{M}_d(\mathbb{C})$, i.e.

$$\Pi_{\lambda}: X \in \mathcal{M}_d(\mathbb{C}) \mapsto \lambda X + (1 - \lambda) \operatorname{Tr}(X) \frac{\mathrm{I}}{d} \in \mathcal{M}_d(\mathbb{C}).$$

Show that the Choi matrix of Π_{λ} is $C(\Pi_{\lambda}) = d\rho_{\lambda}$, where ρ_{λ} is the so-called isotropic state with parameter $\lambda \in [0,1]$ on $\mathbb{C}^d \otimes \mathbb{C}^d$, i.e.

$$\rho_{\lambda} = \lambda |\psi\rangle\langle\psi| + (1 - \lambda) \frac{1}{d^2},$$

with $\psi \in \mathbb{C}^d \otimes \mathbb{C}^d$ the maximally entangled unit vector.

Exercise 3. Let ρ be a state on \mathbb{C}^d and define the quantum channel Π_{ρ} on $\mathcal{M}_d(\mathbb{C})$ as

$$\Pi_{\rho}: X \in \mathcal{M}_d(\mathbb{C}) \mapsto \operatorname{Tr}(X)\rho \in \mathcal{M}_d(\mathbb{C}).$$

- 1. Compute $C(\Pi_{\rho})$, the Choi matrix of Π_{ρ} .
- 2. Deduce from that what is the Kraus rank of Π_{ρ} .

Exercise 4. Define the fully dephasing channel Δ on $\mathcal{M}_d(\mathbb{C})$ and the fully depolarizing channel Π on $\mathcal{M}_d(\mathbb{C})$ as

$$\Delta: X \in \mathcal{M}_d(\mathbb{C}) \mapsto \sum_{i=1}^d \langle e_i | X | e_i \rangle | e_i \rangle \langle e_i | \in \mathcal{M}_d(\mathbb{C}) \quad and \quad \Pi: X \in \mathcal{M}_d(\mathbb{C}) \mapsto \operatorname{Tr}(X) \frac{\mathrm{I}}{d} \in \mathcal{M}_d(\mathbb{C}),$$

where $\{e_1, \ldots, e_d\}$ is an orthonormal basis of \mathbb{C}^d .

- 1. Write Kraus decompositions of Δ and Π in terms of Kraus operators of the form $E_{ij} = |e_i\rangle\langle e_j|, 1 \leq i, j \leq d$.
- 2. Define the unitary operators U and V on \mathbb{C}^d as

$$U = \sum_{j=1}^d \omega^j |e_j\rangle\langle e_j|, \text{ where } \omega = e^{2i\pi/d} \quad \text{and} \quad V = \sum_{j=1}^d |e_{j+1}\rangle\langle e_j|, \text{ where by convention } e_{d+1} = e_1.$$

Show that Δ and Π have the following Kraus decompositions

$$\Delta: X \in \mathcal{M}_d(\mathbb{C}) \mapsto \frac{1}{d} \sum_{p=1}^d U^p X U^{*p} \in \mathcal{M}_d(\mathbb{C}) \quad and \quad \Pi: X \in \mathcal{M}_d(\mathbb{C}) \mapsto \frac{1}{d^2} \sum_{p,q=1}^d U^p V^q X V^{*q} U^{*p} \in \mathcal{M}_d(\mathbb{C}).$$

[This proves that Δ and Π are in fact mixtures of unitary channels.]

Exercise 5. Let $\Phi: B(\mathcal{H}_1) \to B(\mathcal{H}_2)$ and $\Psi: B(\mathcal{H}'_1) \to B(\mathcal{H}'_2)$ be linear maps. Show that, if Φ and Ψ are completely positive, then so are $\Psi \circ \Phi: B(\mathcal{H}_1) \to B(\mathcal{H}'_2)$ (assuming that $\mathcal{H}'_1 = \mathcal{H}_2$, so that the composition is well-defined) and $\Phi \otimes \Psi: B(\mathcal{H}_1 \otimes \mathcal{H}'_1) \to B(\mathcal{H}_2 \otimes \mathcal{H}'_2)$.

Exercise 6. Let $\Phi: B(\mathcal{H}_1) \to B(\mathcal{H}_2)$ and $\Psi: B(\mathcal{K}_1) \to B(\mathcal{H}_2)$ be quantum channels. Show that, if one of them is entanglement-breaking, then, for any state ρ on $\mathcal{H}_1 \otimes \mathcal{K}_1$, $\Phi \otimes \Psi(\rho)$ is a separable state on $\mathcal{H}_2 \otimes \mathcal{K}_2$.

Exercise 7.

- 1. Let $\Phi: B(\mathcal{H}_1) \to B(\mathcal{H}_2)$ be a linear map that preserves Hermiticity (i.e. for all $X \in B(\mathcal{H}_1)$, if $X^* = X$ then $\Phi(X)^* = \Phi(X)$). We admit that this is equivalent to $C(\Phi) \in B(\mathcal{H}_2 \otimes \mathcal{H}_1)$ being Hermitian. Show that Φ can be written as the difference of two completely positive linear maps.
- 2. Let $\Phi: B(\mathcal{H}_1) \to B(\mathcal{H}_2)$ be a linear map. Show that Φ can be written as the linear combination of four completely positive linear maps.

Hints for exercises – November 5th 2025

Hints for exercise 1

Start from the duality relation, for all X, Y, $\text{Tr}(X\Phi^*(Y)) = \text{Tr}(\Phi(X)Y)$. Then, for question (1) take $X = |e_i\rangle\langle e_j|$, $1 \leq i, j \leq \dim(\mathcal{H})$. While for questions (2) and (3) rewrite $\text{Tr}(\Phi(X)Y)$ as $\text{Tr}(XZ_{Y,\Phi})$.

Hints for exercise 2

Fix $\{e_1, \ldots, e_d\}$ an orthonormal basis of \mathbb{C}^d and write the expressions of $C(\Pi_{\lambda})$ and ρ_{λ} in the product orthonormal basis of $\mathbb{C}^d \otimes \mathbb{C}^d$ $\{e_i \otimes e_j, 1 \leq i, j \leq d\}$.

Hints for exercise 3

For question (2), recall that the Kraus rank of Π_{ρ} is the rank of $C(\Pi_{\rho})$.

Hints for exercise 4

- 1. For Π , write the trace as a contraction with some E_{ij} 's and the identity as a sum of some E_{ij} 's.
- 2. First, write the expression of U^p, V^q, U^pV^q . Second, given $n \in \{-d, -(d-1), \ldots, d-1, d\} \setminus \{0\}$, what is the value of $\sum_{p=1}^d e^{2i\pi np/d}$?

Hints for exercise 5

For $\Phi \otimes \Psi$, observe that it can be written as $(id \otimes \Psi) \circ (\Phi \otimes id)$.

Hints for exercise 6

First observe that $\Phi \otimes \Psi = (id \otimes \Psi) \circ (\Phi \otimes id) = (\Phi \otimes id) \circ (id \otimes \Psi)$. And second observe that, for any quantum channel Θ and any separable state σ , $\Theta \otimes id(\sigma)$ is a separable state.

Hints for exercise 7

- 1. Observe that any Hermitian matrix C can be written as the difference of two positive semidefinite matrices: $C = C^+ C^-$, where $C^+, C^- \ge 0$.
- 2. Observe that any matrix C can be written as the linear combination of two Hermitian matrices: $C = C_R + iC_I$, where $C_R^* = C_R$, $C_I^* = C_I$.

- 1) $\forall x, y \in B(\mathcal{H})$, $T_{n}(x \phi^{*}(y)) = T_{n}(\phi(x)y) = T_{n}(x)T_{n}(\sigma y)$ Taking X = le: Xejl, for 1(i, j &d, we get: YYEB(H), (ejl \$ (Y) lei> = (ejlei> Tr (+Y) Hence: $\forall \forall \in B(\mathcal{H}), \ \Phi^*(\forall) = \sum_{i,j=1}^{\infty} \langle e_i | \Phi^*(\forall) | e_i \rangle | e_j \times e_i | = \sum_{i=1}^{\infty} \ln(\sigma \forall) | e_i \times e_i | = \ln(\sigma \forall) | e_i \times$
- 2) $\forall \times \in B(\mathcal{H}_1 \otimes \mathcal{H}_2)$, $\gamma \in B(\mathcal{H}_1)$, $\mathcal{T}_1(\times \Phi^*(\vee)) = \mathcal{T}_1(\Phi(\times) \vee) = \mathcal{T}_1(\mathcal{T}_{\mathcal{H}_2}(\times) \vee) = \mathcal{T}_1(\times (\vee \otimes I))$ Hence: ∀ Y ∈ B (H1), \$(Y) = Y⊗ I
- 3) $\forall \times \in B(\mathcal{H}_1)$, $\forall \in B(\mathcal{H}_1 \otimes \mathcal{H}_2)$, $T_1(\times \Phi^*(Y)) = T_1(\Phi(X)Y) = T_1((X \otimes \nabla)Y) = T_1((X \otimes \nabla)Y)$ = Tr (x Try ((I 00) Y))

Hence: YYEB(H10H2), Px(Y)= Try((IDO)Y)

Exercise 2 $C(\Pi_{\lambda}) = \sum_{i,j=1}^{c} \Pi_{\lambda}(|e_{i} \times e_{j}|) \otimes |e_{i} \times e_{j}| = \sum_{i,j=1}^{d} (\lambda |e_{i} \times e_{j}| + (1-\lambda) \langle e_{j} |e_{i} \rangle \frac{1}{d}) \otimes |e_{i} \times e_{j}|$ $=\lambda \sum_{i,j=1}^{d} |e_{i} \times e_{j}| \otimes |e_{i} \times e_{j}| + (1-\lambda) \sum_{i=1}^{d} \frac{1}{d} \otimes |e_{i} \times e_{i}| = \lambda \cdot d |\Psi \times \Psi| + (1-\lambda) \frac{1}{d} \otimes I = d \left(\lambda |\Psi \times \Psi| + (1-\lambda) \frac{1}{d^{2}}\right)$

- 1) $C(\Pi_e) = \sum_{i,j=1}^d \Pi_e(|e_i \times e_j|) \otimes |e_i \times e_j| = \sum_{i,j=1}^d (\langle e_j | e_i \rangle_e) \otimes |e_i \times e_j| = \sum_{i=1}^d e_i \otimes |e_i \times e_i| = e_i \otimes I$
- 2) The Knows rank of Π_e is the rank of $C(\Pi_e) = e \otimes I$, i.e. $rank(e) \times rank(I) = rank(e) \times d$

- 1) $\Delta(x) = \sum_{i=1}^{d} |e_i \times e_i| \times |e_i \times e_i| = \sum_{i=1}^{d} E_{ii} \times E_{ii}^*$ $\pi(x) = \sum_{i=1}^{d} \langle e_i | x | e_i \rangle \sum_{i=1}^{d} \frac{1}{d} | e_i x e_i | = \frac{1}{d} \sum_{i,j=1}^{d} | e_i x e_j | x | e_j x e_i | = \frac{1}{d} \sum_{i,j=1}^{d} E_{ij} x E_{ij}^*$
- 2) Einst observe that: 415p 6d, UP = & wiPlej Xej1 Hence: 1 = UPXUXP = 1 = wir who lejxej | X lex Xex = 1 = (= wir who) lej Xej | X lex Xex)

Observe most that: V1696d, V9 = & lej+9 Xej1. So V16p,96d, UPV9 = & wiPlej Xej-91

Hence: 1 2 UPV9 X V*9 U*P= 1 2 wip wip wp lej Xej-9 | X lek-9 Xek |

And thus: 1 & UPV9 XV*9 U*P = 1 & E | lej Xej-9 | X | ej-9 | Xej | = 1 & E | Xek | X | ek Xej | = T(X) change of variable k=j-9

- . Ear larry Hilbert space IX, (4.Φ) Sid: B(H1 SIX) → B(H2 SIX) can be written as (4 Sid). (Φ Sid).

 Hence, for all × > O, (4.Φ) Sid (×) = 4 Sid (Φ Sid(×)) > O. So 4.Φ is CP

 > O because Φ CP

 > O because 4 CP
- . Observe that $\Phi \otimes \Upsilon = (id \otimes \Upsilon) \circ (\Phi \otimes id)$.
- So for any Hilbert space It, Φ⊗± ⊗id: B (H1⊗H1⊗It) → B (H2⊗H1⊗It) can be written as (ib ⊗± ⊗id). (Φ⊗id ⊗id)
- Hence, for all X>0, \$\phi \pm \id (\times) = id \pi \pm \id (\phi \pm \id \id (\times) \). So \$\phi \pm \pm \pm \id \text{ cp} \\
 \times 0 \text{ because } \pm \text{ cp} \\
 \times 0 \text{ because } \pm \text{ cp}

Exercise 6

Observe that $\phi \otimes \Upsilon = (id \otimes \Upsilon) \circ (\phi \otimes id) = (\phi \otimes id) \circ (id \otimes \Upsilon)$

Suppose that ϕ is entanglement breaking. Then for any $e \in D(\mathcal{H}_1 \otimes \mathcal{H}_1)$, $\phi \otimes id(e) \in S(\mathcal{H}_2 \otimes \mathcal{H}_1)$, and thus $id \otimes \Psi (\phi \otimes id(e)) \in S(\mathcal{H}_2 \otimes \mathcal{H}_2)$.

Similarly, if Y is entanglement-breaking, then for any $e \in D(\mathcal{H}_1 \otimes \mathcal{K}_1)$, id $\otimes Y(e) \in S(\mathcal{H}_1 \otimes \mathcal{K}_2)$, and thus $\Phi \otimes \mathrm{id}(\mathrm{id} \otimes Y(e)) \in S(\mathcal{H}_2 \otimes \mathcal{K}_2)$

[We also used the fact that if ϕ is CP (in fact even just positive) and TP, then, for any deparable state ∇ , $\phi \otimes id(\nabla)$ is a deparable state. Indeed: $\phi \otimes id(\sum_{i=1}^{n} \lambda_i \varphi_1^{(i)} \otimes \nabla_2^{(i)}) = \sum_{i=1}^{n} \lambda_i \varphi_1^{(i)} \otimes \nabla_2^{(i)}$

Exercise 7

- 1) Since $C(\phi)$ is Hermitian, it can be written as the difference of two fositive semidefinite operators: $C(\phi)=C^+-C^-$, where $C^+>0$, $C^->0$ (Endeed: $C(\phi)=\sum_i |u_i \times u_i|$ and $C^+=\sum_i |u_i \times u_i|$, $C^-=\sum_i -\lambda_i |u_i \times u_i|$) Since C^+ , $C^->0$, there exist CP linear maps Φ^+ , Φ^- s.t. $C^+=C(\Phi^+)$, $C^-=C(\Phi^-)$. By linearity, we have $\Phi=\Phi^+-\Phi^-$.
- 2) White $C(\phi) = C_R + i C_I$, where $C_R = \frac{C + C^*}{2}$, $C_I = -i \frac{C C^*}{2}$ are Hermitian. Hence $C_R = C_R^+ C_R^-$ and $C_I = C_I^+ C_I^-$, where C_R^+ , C_R^- , C_I^+ , $C_I^ \geqslant 0$ So there exist C_R^- linear maps Φ_R^+ , Φ_R^- , Φ_R^+ , Φ_I^- o.t. $C_R^+ = C(\Phi_R^+)$, $C_R^- = C(\Phi_R^-)$, $C_I^+ = C(\Phi_I^+)$, $C_I^- = C(\Phi_I^-)$. And by linearity, we have $\Phi = \Phi_R^+ \Phi_R^- + i \Phi_I^+ i \Phi_I^-$