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@ Introduction
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What is quantum physics and why the need for it?

Quantum physics: theory that progressively arose to explain certain observed physical
phenomena, which classical physics could not account for.

Examples of puzzling phenomena at the origin of the theory (in the 1900’s):
e black-body radiation: resolved by quantization of light into photons (Planck, Einstein)
e electron interference: resolved by wave function description of particles (de Broglie, Schrédinger)

Full development of the theory from the 1920’s (Heisenberg, Born, Dirac, Bohr, von Neumann, Bell, etc.)
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What is quantum physics and why the need for it?

Quantum physics: theory that progressively arose to explain certain observed physical
phenomena, which classical physics could not account for.

Examples of puzzling phenomena at the origin of the theory (in the 1900’s):
e black-body radiation: resolved by quantization of light into photons (Planck, Einstein)
e electron interference: resolved by wave function description of particles (de Broglie, Schrédinger)

Full development of the theory from the 1920’s (Heisenberg, Born, Dirac, Bohr, von Neumann, Bell, etc.)

Some key aspects of quantum physics:
@ Not needed to describe ordinary scale behaviors, only very small scale ones.
L+ classical physics: approximation of quantum physics valid at macroscopic scale

@ Inherently probabilistic, not just as a consequence of imprecisions or lack of knowledge.
even in ideal scenario, measurement outcomes cannot be predicted with certainty

@ Neat mathematical formalism but not so physically intuitive.
L, striking consequences: uncertainty, superposition, entanglement, etc.
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What is this talk about?

Goal of this talk: Explain how asymptotic geometric analysis can be useful to tackle problems
arising in quantum information theory.
[ The reference: Alice and Bob meet Banach, by G. Aubrun and S. Szarek. |
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What is this talk about?

Goal of this talk: Explain how asymptotic geometric analysis can be useful to tackle problems
arising in quantum information theory.
[ The reference: Alice and Bob meet Banach, by G. Aubrun and S. Szarek. |

Question 1: What is quantum information theory?
communication, computation, encryption, etc.
Understanding if some information processing tasks could be performed more efficiently if the
physical support of information obeys the laws of quantum rather than classical physics.
L, e.g. electrons, photons
More specifically: Quantify the potential advantage of quantum over classical resources.
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What is this talk about?

Goal of this talk: Explain how asymptotic geometric analysis can be useful to tackle problems
arising in quantum information theory.
[ The reference: Alice and Bob meet Banach, by G. Aubrun and S. Szarek. |

Question 1: What is quantum information theory?
communication, computation, encryption, etc.
Understanding if some information processing tasks could be performed more efficiently if the
physical support of information obeys the laws of quantum rather than classical physics.
L, e.g. electrons, photons
More specifically: Quantify the potential advantage of quantum over classical resources.

Question 2: What is asymptotic geometric analysis?
Using probabilistic techniques to study Banach spaces of finite but high dimension.
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What is this talk about? (continued)

Why “high dimension”? — 2-level quantum system (e.g. electron’s spin, photon’s polarization)
Quantum system composed of 1 qubit: described by the space C?.

Quantum system composed of M qubits: described by the space (CZ)®M =c?".

— The dimension of a system grows exponentially with its number of subsystems, so we have
to deal with high dimension as soon as more than a few qubits are involved.
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What is this talk about? (continued)

Why “high dimension”? — 2-level quantum system (e.g. electron’s spin, photon’s polarization)
Quantum system composed of 1 qubit: described by the space C?.

Quantum system composed of M qubits: described by the space (Cz)@”‘” =c?".

— The dimension of a system grows exponentially with its number of subsystems, so we have
to deal with high dimension as soon as more than a few qubits are involved.

Why “probabilistic techniques”?
@ Identify the typical properties of quantum systems, i.e. when they are picked at random.
@ Prove the existence of quantum systems having certain properties, using random
constructions.

Note: “typical” = “with probability going to 1 as the underlying dimension grows”.
— There are usually two steps in the argument:
@ Identify the average behavior of the property under consideration.
@ Show that this average behavior is generic in high dimension.
Concentration of measure phenomenon: a sufficiently ‘well-behaved’ many-variable function
has a very small probability of deviating from its average.
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Mathematical formalism of quantum physics in a nutshell

@ Quantum system composed of 1 subsystem: Complex Hilbert space H.
— Finite-dimensional case: H = C9 for some d € N (equipped with inner product (|-)).

Quantum system composed of M subsystems: Complex Hilbert space H=H1 ® --- @ Hy,
tensor product of the complex Hilbert spaces corresponding to each subsystem.
— Finite-dimensional case: for each 1 < i < M, H; = C% for some d; € N, so H = C% ",
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Mathematical formalism of quantum physics in a nutshell

@ Quantum system composed of 1 subsystem: Complex Hilbert space H.
— Finite-dimensional case: H = C9 for some d € N (equipped with inner product (|-)).

Quantum system composed of M subsystems: Complex Hilbert space H=H1 ® --- @ Hy,
tensor product of the complex Hilbert spaces corresponding to each subsystem.
— Finite-dimensional case: for each 1 < i < M, H; = C% for some d; € N, so H = C% ",

@ State of system H:
Pure state: unit vector y in H (or rather associated rank 1 projector yy* on H).
Mixed state: convex combination of pure states

4 {ﬂ17-~-7#r>0a22_1#k:1

.o
= KWW, with ) )
P ,;1“ ViWk VYi,..., Yr unit vectors in H

Equivalently, p is a self-adjoint positive semidefinite and trace 1 operator on H.
— Finite-dimensional case: p € My(C) s.t. p* =p, p = 0and Tr(p) = 1.
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Mathematical formalism of quantum physics in a nutshell

@ Quantum system composed of 1 subsystem: Complex Hilbert space H.
— Finite-dimensional case: H = C9 for some d € N (equipped with inner product (|-)).

Quantum system composed of M subsystems: Complex Hilbert space H=H1 ® --- @ Hy,
tensor product of the complex Hilbert spaces corresponding to each subsystem.
— Finite-dimensional case: for each 1 < i < M, H; = C% for some d; € N, so H = C% ",

@ State of system H:
Pure state: unit vector y in H (or rather associated rank 1 projector yy* on H).
Mixed state: convex combination of pure states

4 {ﬂ17-~-7#r>0a22_1#k:1

.o
= KWW, with ) )
P ,;1“ ViWk VYi,..., Yr unit vectors in H

Equivalently, p is a self-adjoint positive semidefinite and trace 1 operator on H.
— Finite-dimensional case: p € My(C) s.t. p* =p, p = 0and Tr(p) = 1.

Classical-Quantum correspondence:

Given a quantum state p € My(C), spec(p) € R? is a probability vector, i.e. a classical state.
Extra freedom: choice of basis where p is diagonal.
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Separability vs entanglement in multipartite quantum systems

Definition [Separability and entanglement]
Astate pon Hy ®--- @ Hy is called separable if it is a convex combination of product states, i.e.
L self-adjoint positive semidefinite operator with trace 1 on H1 ® - - - @ Hy

r r

k k . M1, 1 2072:/#(:1

p= Y ukpf® - @pjy, with "7 = .

K—1 i+, P} states on H;, foreach 1 </i< M
Otherwise it is called entangled.

[ Note: If p is a pure state, i.e. p = yy* for some unit vector y € H1 ® --- @ Hy, then p is
separable iff W =y ® - - - ® Yy for some unit vectors y; € H;, foreach 1 < i< M. |
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Separability vs entanglement in multipartite quantum systems

Definition [Separability and entanglement]

Astate pon Hy ®--- @ Hy is called separable if it is a convex combination of product states, i.e.
L self-adjoint positive semidefinite operator with trace 1 on H1 ® - - - @ Hy
A {,Ll1,...,,llr>o, 22:1/.1;(:1

K Koo
= ® - ®ppy, With
P k;'ukm Pm pl,....p! states on H;, foreach 1 <i< M

Otherwise it is called entangled.

[ Note: If p is a pure state, i.e. p = yy* for some unit vector y € H1 ® --- @ Hy, then p is
separable iff W =y ® - - - ® Yy for some unit vectors y; € H;, foreach 1 < i< M. |

Observation:
e In a product state, there are no correlations between subsystems.
L, P=pP1X---QDpPpm L cf. independent random variables: joint distribution factorizes
e In a separable state, there are only classical correlations between subsystems.
p=Yi_ upi®- - ®pk L described by the probability distribution g = (u1, .. ., tr)
e In an entangled state, there are intrinsically quantum correlations between subsystems.

Fact: In most information processing tasks, a quantum system must be in an entangled state to
provide an advantage over a classical system.
— Certifying entanglement (and quantifying it) is an important issue in practice.
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9 Tensor norms and entanglement
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Tensor norms in Banach spaces

Let A1,...,Aum be Banach spaces. Given x € Ay ® --- ® Aw, its injective norm is

(X114 @--0eay = sup{|(b1 @---@bm|x)| : by € A, ||bill 4 <1},

and its projective normis

r r
X[ 4y 05--copay = nfS Y Jow] - af € A, [laf]la <1, x=) oxaf®---@df reN
k=1 k=1
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Tensor norms in Banach spaces

Let A1,...,Aum be Banach spaces. Given x € Ay ® --- ® Aw, its injective norm is

(X114 @--0eay = sup{|(b1 @---@bm|x)| : by € A, ||bill 4 <1},

and its projective normis

r

.
XN A ©nAu = inf{ Y o] af €A [laf]la <1, x=Y akal®--@ay, re N}~
k=1 =1

These norms are dual to one another: forall x € A1 ® - ® Ay,
1
1

X/l 4y 2e-eau = sup {[{y [x)] = [ly

Xl 4,85 @amn = sup {[(y [x)] « lly

i ey <1}
}

<
<

A Re @Ay
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Tensor norms in Banach spaces

Let A1,...,Aum be Banach spaces. Given x € Ay ® --- ® Aw, its injective norm is

([ x[| Ay~ @eay = sup {|(b1®@--- @by |x)| : bi € Af, |[bjllar <1},

and its projective normis

r

.
XN A ©nAu = inf{ Y o] af €A [laf]la <1, x=Y akal®--@ay, re N}~
=1 k=1

These norms are dual to one another: forall x € A1 ® - ® Ay,
1
1

X/l 4y 2e-eau = sup {[{y [x)] = [ly

Xl 4,85 @amn = sup {[(y [x)] « lly

i ey <1}
}

<
<

A Re @Ay

The injective and projective norms are examples of tensor norms: for all a1 € Aq,...,auy € Au,

a1 @ @ amllae-ocan = 121 @+ @ aml| A @r-nay = l1atlla, -~ l|aml ay-
And they are extremal among such norms: for any other tensor norm || - || on A1 ® - - - ® A,
- [lai@ecean < I <Nl 4y@r-@rau-
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Characterizing entanglement through tensor norms

e Pure state entanglement:
vector 2-norm
Banach spaces (Cd’} [- Hﬂ), 1<i<M. [Notation:V x € C x|y := (Tf_ |xk|2)1/2 ]
2
because || - || ¢y is a tensor norm
2

Apure state y € C% @ --- @ CW is s t. lwll or--aw = 1, and thus
2

<A1

H“'l”g‘; ®s"‘®sng =
>1

HWHZ? ®n“‘®n€gM

And v is separable iff \|\y||ég1 e H‘VHZZ‘ . 1.

Reminder: HWHZ‘;‘ —

::sup{|<<p1®-~~®<pmw>l L g €CY, 19ill :1}

r r
Wl o o ::inf{ X Jow| cxf €l xfll g =1, v= Zowx?@--@xﬁ}
2 WnWnty k=1 2 k=1
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Characterizing entanglement through tensor norms

e Pure state entanglement:
vector 2-norm

Banach spaces (Cd’} (K H@), 1<i<M. [Notation:V x €CY 1|l := (xe_, |xk|2)1/2 ]
because || - || ¢y is a tensor norm
2

Apure state y € C% @ --- @ CW is s t. lwll or--aw = 1, and thus
2

H“'l”g? ®s"‘®sng <

X
W10 > 1

And v is separable iff \|\y||ég1 e H‘VHZZ‘ SpalM = 1.

Reminder: ||y||

. sup{|<<p1 @ @ouly)l o e C o g :1}

r r
Wl o o ::inf{ Y Jou s xf € €O Xkl =1, v = Zowx?@--@xﬁ}
2 WnWnty k=1 2 k=1

o Mixed state entanglement: )
matrix 1-norm

Banach spaces (Md,(c), II- Hsa,> < i< M. [Notation: ¥ X € My(C), [ X||gs := Tr|X]]
because || - || s is a tensor norm

A mixed state p € My, (C) ® - - @ My, (C) i |s s.t. ||p||sd1 @m =1, and thus HpHSd1 o >1.

And p is separable iff HpHsd1

Dperg S = 1

.

Reminder: ||p|| T mf{ Y lok| : T € My (C), Hﬂcfv‘HSd,. =1,p=1Y ockrﬁ‘@‘..@l-ﬁ”}
k=1 1 k=1
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Quantifying entanglement through tensor norms (physical point of view)

If H"’Hk? D@l < 1or ||\|ng¢211 Dl M > 1, then y is ‘very’ entangled.
It {|pl] go 5. gin > 1, then p is ‘very’ entangled.
1 T !

Questions: Can this be made quantitative?
Is there an operational interpretation for these norms being ‘small’ or ‘large’?
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Quantifying entanglement through tensor norms (physical point of view)

If H‘I’H;;;ﬁ P 1or H\VHZ? Dl 1, then y is ‘very’ entangled.
If HpHS?1 D S > 1, then p is ‘very’ entangled.
Questions: Can this be made quantitative?

Is there an operational interpretation for these norms being ‘small’ or ‘large’?

Definition [Geometric measure of entanglement (Wei/Goldbart)]

Letyw € Hy ®--- @ Hy be a pure state. Its geometric measure of entanglement (GME) is

E(y) = *|0gSUP{|<<P1 ®---omy)? : ¢ € Hj, il g = 1} = —2log [[Wll g, ..qp m-

Fact: The GME has a meaning in several quantum information processing tasks (construction of
entanglement witnesses, discrimination of quantum states under local operations, detection of
phase transition in quantum many-body systems, etc.)

From the definition, E(y) = 0 iff y is separable. But how large can E(y) be for y entangled?
L faithful entanglement measure for multipartite pure states

Need quantum entanglement? Don't sweat it, just pick at random! Jornadas 1YQ2025 Sevilla — November 12 2025 11



Quantifying entanglement through tensor norms (mathematical point of view)

Let us look at the previous definitions in the case of pure states for M = 2 and Hy = H, = C°.

We can identify x = Z xi ek ® e € C?®CY with X = ): xk/ exef € My(C).
k /=1
The singular value decomposmon of X thus corresponds to the Schmidt decomposition of x:

.5 >0
X= Sk UkVj > X = Sk Uk ® vk, with r < d and
;;:1 k; {Uk}k 1> {Vk =y 0.nfin c?
1/2

This identification preserves the Euclidean norm: ||x\|[c,z = (The1sk) 7" = Xl sg-
While [x]0,i¢ = et <ier Sk = Xl and [l g s = Ty = Xl g

—If ||XH/{£,2 =1, then by Cauchy-Schwarz ﬁ X/l pg@eeg < 1a@nd 1< [Ix]l g, < V.

L» attained for x = ﬁ YOk ® vi
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Quantifying entanglement through tensor norms (mathematical point of view)

Let us look at the previous definitions in the case of pure states for M = 2 and Hy = H, = C°.

We can identify x = Z xi ek ® e € C?®CY with X = ): xk/ exef € My(C).
k=1
The singular value decomposmon of X thus corresponds to the Schmidt decomposition of x:

.5 >0
X= Sk UkVj > X = Sk Uk ® vk, with r < d and
kz:1 k; {Uk}k 1 {v}i_4 onfinc?

This identification preserves the Euclidean norm: ||x\|[d2 = (Thes sk)1/2 = [IX]| g¢-
While 1] g, = maxtcker Sk = | X152 and [Xlger s = Ty = X[l

—If ||XH/{£,2 =1, then by Cauchy-Schwarz ﬁ X/l pg@eeg < 1a@nd 1< [Ix]l g, < V.

L» attained for x = ﬁ YOk ® vi

More generally: Assume thatd; <--- < dyandset D:=dj X --- X dy—1.

o For any pure state y € C% @ --- @ C, H\|I||[d1® oM

Proof idea: Recursive argument from bipartite case.

e For any mixed state p € Mg, (C) @ - ® M, (C), [Ipl| 41 <D.
1

Qn--@rSM

Proof idea: Pure states are extremal and |\W*||Sa1® g = lwl|? 0 Gl
1 T T
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@ Typical amount of entanglement in random multipartite pure states

Cécilia Lancien
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Entanglement of uniformly distributed multipartite pure states

[ Notation from now on: || - || := || [[eg, I - le := Il [lggyeems I lln == [I - [l ggyenm- ]
Fact: For any unit vector y € (C¥)®M ||y|e > ﬁ, i.e. E(y) < (M—1)logd.

Question: Are multipartite pure states generically ‘very’ or ‘little’ entangled?
— For a unit vector y € (C9)®M sampled at random, what is typically the value of |||

thus of E(y)?

¢, and
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Entanglement of uniformly distributed multipartite pure states

[ Notation from now on: || - || := || - [|¢g, || - [l := || - ll(eg)zem

[l =1l egynn- ]

> ﬁ i.e. E(y) < (M—1)logd.

Question: Are multipartite pure states generically ‘very’ or ‘little’ entangled?

— For a unit vector y € (C9)®M sampled at random, what is typically the value of |||
thus of E(y)?

Fact: For any unit vector y € (

¢, and

Theorem [Typical injective norm of a uniformly distributed unit vector (Aubrun/Szarek)]

There exist constants ¢, C, ¢y > 0 s.t., for y € (C9)®M a umformly distributed unit vector,
Ls i.e. Uy ~ y for all unitary U on (C9)®

Mlog M Mlog M _
P(c g1 < lwlle < Cy/ G- ) _ g~ CodMlogM_

Consequence: For y € (Cd)®M a uniformly distributed pure state, when d is large,
E(y) = (M—1)logd — log(Mlog M)+ O(1) with high probability.
— Such random multipartite pure states are typically close to maximally entangled.

QM

In fact, for M > 2, there are no explicit examples of so highly entangled multipartite pure states!
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Main tools in the proof

Observation: A uniformly distributed unit vector y € (C?)®M has the same distribution as
g/llgll, where g € (€9)*M is a Gaussian vector.
independent complex Gaussian entries with mean 0 and variance 1
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Main tools in the proof

Observation: A uniformly distributed unit vector y € (C?)®M has the same distribution as
, where g € (C%)®M is a Gaussian vector.
independent complex Gaussian entries with mean 0 and variance 1

o Estimating the supremum of a Gaussian process:
Given K C C" a subset of the unit sphere, we want to estimate E sup | (x|g)|.
xeK

Definitions: C5 C K is a 8-covering setif: Vx € K, 3y € Cg: |[x—y| <&
Ss C K is a §-separated setif: V x,y € Sg, x #y = |[x—y| =3
1 1
Fact: Upper bound: Esup|(x|g)| < —=E sup |(x|g)| < —= v/2log|C;|
xeK 1-0 xeq, 1‘—5’ -
discretization argument baby’ chaining argument
log | S5

Lower bound: E X E X >
ig}gl( lg)| > sgp\( lg)| > 2mlog2

Sudakov inequality
— Taking K := {1 ®---®@@u : ¢; € C, ||¢j|| =1}, we have E||g|lc = Esugl(w\a)l-
(015

Need quantum entanglement? Don’t sweat it, just pick at random! Jornadas 1YQ2025 Sevilla — November 12 2025



Main tools in the proof

Observation: A uniformly distributed unit vector y € (C?)®M has the same distribution as
, where g € (C%)®M is a Gaussian vector.
independent complex Gaussian entries with mean 0 and variance 1

o Estimating the supremum of a Gaussian process:
Given K C C" a subset of the unit sphere, we want to estimate E sup | (x|g)|.
xeK

Definitions: C5 C K is a 8-covering setif: Vx € K, 3y € Cg: |[x—y| <&
S5 C K is a -separated setif: V x,y € S5, x #y = ||x—y| =8

1 1
Fact: Upper bound: Esup|(x|g)| < —=E sup |(x|g)| < —= v/2log|C;|
xeK 1-0 xeq, 1‘—5! -
discretization argument baby’ chaining argument

log | S5

Lower bound: E X E X >
ig}gl( lg)| > sgp\( lg)| > 2mlog2

Sudakov inequality
— Taking K := {1 ®---®@@u : ¢; € C, ||¢j|| =1}, we have E||g|lc = Esug|((p\g)|.
(OIS
e Gaussian concentration inequality:
Given f: C" — R an L-Lipschitz function, we have: V € > 0, P(f(g) = Ef+-¢) < e ¢ /L.
— Taking f := || - |le, f is 1-Lipschitz.
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Conclusion and follow-up questions

Result: For all M > 2, there exist close to maximally entangled M-partite pure states.
In order to obtain such a state, picking it uniformly at random works with high probability!
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Conclusion and follow-up questions

Result: For all M > 2, there exist close to maximally entangled M-partite pure states.
In order to obtain such a state, picking it uniformly at random works with high probability!

Questions:

@ Can we exhibit so highly entangled states with constructions that require less randomness?
or even explicit ones?

@ The uniform distribution might not capture truly ‘interesting’ states... What about estimating
the typical entanglement of more ‘physically relevant’ states?
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e Typical amount of entanglement in more ‘physically relevant’ random multipartite pure states
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The curse of dimensionality when dealing with many-body quantum systems

Main issue when dealing with many-body quantum systems: exponential growth of the dimension.
However, ‘physically relevant’ states of such systems are often well approximated by so-called
tensor network states (TNS), which form a small subset of the global state space.
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The curse of dimensionality when dealing with many-body quantum systems

Main issue when dealing with many-body quantum systems: exponential growth of the dimension.
However, ‘physically relevant’ states of such systems are often well approximated by so-called
tensor network states (TNS), which form a small subset of the global state space.

Example: A matrix product state (MPS) on (C?)®M is a pure state W € (C?)*M of the form

d . .
v= Y Tr(x X" ) e @@ ey, where x{,.. x{) € (€)1 <i< M.
Kty =1

— Such state is described by Mdg® parameters, which is linear rather than exponential in M.

[ Vocabulary: d is the physical dimension. g is the bond dimension. |
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The curse of dimensionality when dealing with many-body quantum systems

Main issue when dealing with many-body quantum systems: exponential growth of the dimension.
However, ‘physically relevant’ states of such systems are often well approximated by so-called
tensor network states (TNS), which form a small subset of the global state space.

Example: A matrix product state (MPS) on (C?)®M is a pure state W € (C?)*M of the form
d :
Y= Z Tr <X,E11) Xﬁy)) ex @+ @ ex,, Where X(') ,X(S') € My(C), 1 <i< M.
Kt yeoe k=1

— Such state is described by Mdg® parameters, which is linear rather than exponential in M.
[ Vocabulary: d is the physical dimension. g is the bond dimension. |
Fact: On a 1D system (M subsystems disposed on a line), the ground state of a gapped local
Hamiltonian is well approximated by an MPS (Hastings, Landau/Vazirani/Vidick)

spectral gap lower bounded by a constant independent of M
composed of terms which act non-trivially only on nearby sites

— In condensed-matter physics, MPS are used as Ansatz in ground energy computations:
optimization over a manageable number of parameters, even for large M.
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Entanglement of random MPS

independent complex Gaussian entries with mean 0 and variance 1

Idea: Pick X1(i), ... ,Xéi) € My(C), 1 < i< M, independent Gaussian matrices.
Let y € (C9)®M be the corresponding random MPS, i.e.

! d
y=towihy' = Y T (X X)) e @ @e,
Il Ko =
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Entanglement of random MPS

independent complex Gaussian entries with mean 0 and variance 1

Idea: Pick X1(/), e ,X[E,f) € My(C), 1 < i< M, independent Gaussian matrices.
Let y € (C9)®M be the corresponding random MPS, i.e.

! d
y=towihy' = Y T (X X)) e @ @e,
Il Kt e Rg=1

Remark: The parameter g quantifies the amount of bipartite entanglement: across any splitting
of subsystems {1,...,L} vs {L+1,...,M}, y has Schmidt rank at most ¢ < at.

L,
Now what about genuinely multipartite entanglement? area vs volume law

—lfg=1,y =y ®- - QWY is separable. But what can we say for g > 1?
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Entanglement of random MPS

independent complex Gaussian entries with mean 0 and variance 1

Idea: Pick X1(/), e ,X[E,f) € My(C), 1 < i< M, independent Gaussian matrices.
Let y € (C9)®M be the corresponding random MPS, i.e.

/ d
y=towihy' = Y T (X X)) e @ @e,
|l Ky oo by =1

Remark: The parameter g quantifies the amount of bipartite entanglement: across any splitting
of subsystems {1,...,L} vs {L+1,...,M}, y has Schmidt rank at most ¢ < at.

L,
Now what about genuinely multipartite entanglement? area vs volume law

—lfg=1,y =y ®- - QWY is separable. But what can we say for g > 1?

Result: For y € (Cd)®"/’ a Gaussian MPS with bond dimension g, when d and q are large,
E(y) = (M—1)logmin(d,q)+ O(1) with high probability (Fitter/Lancien/Nechita).

— Such random multipartite pure states have an amount of entanglement which is not maximal
if @ < d, but still extensive.

Proof idea: Estimate E||y||¢ with a discretization argument and bound the probability of deviating
from it with a local version of the Gaussian concentration inequality.
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Perspectives

@ Can we estimate the injective norm for other models of random multipartite pure states?
— Trade-off between ‘mathematically tractable’ and ‘physically relevant'...!
on regular lattice or more complicated graph “
E.g. 2D or 3D ground states are also well-approximated by tensor network states.
— Some of their typical entanglement-related properties have been studied: correlations
(Lancien/Pérez-Garcia), mutual information (Hayden/Nezami/Qi/Thomas/Walter/Yang), etc.
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Perspectives

@ Can we estimate the injective norm for other models of random multipartite pure states?
— Trade-off between ‘mathematically tractable’ and ‘physically relevant'...!
on regular lattice or more complicated graph “
E.g. 2D or 3D ground states are also well-approximated by tensor network states.
— Some of their typical entanglement-related properties have been studied: correlations
(Lancien/Pérez-Garcia), mutual information (Hayden/Nezami/Qi/Thomas/Walter/Yang), etc.

@ What about computing projective norms rather than injective norms?
This would be particularly useful for quantifying the entanglement of mixed multipartite
states, which is in general a hard problem (Gharibian, Pérez-Garcia).

For pure states, we at least have a lower bound (by duality): ||y|lx >

1
Twlle

For mixed states, we can define sufficient conditions for entanglement, which consist in
checking pure state entanglement (Jivulescu/Lancien/Nechita).
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